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• Module Summary: This module explores the probabilistic spread of the Emerald Ash                     
Borer (an invasive species) through a series of stylized landscapes. 

• Informal Description: This module explains the ideas of percolation and their                   
application on several different levels. Students learn through simulation or proof about percolation                         
and percolation thresholds and how they can be applied to many areas including invasive species                             
control. 

• Target Audience: The module materials include a number of components (handout,                   
simulation/lab, lecture notes on mathematical proofs) in the interest of customization (both across                         
levels of math courses and across disciplines). The introduction, description of percolation and                         
subsequent proofs would be an appropriate lesson for an advanced undergraduate probability class.                         
The introduction, math background, description of percolation, and simulation component would                     
be an appropriate lesson for an earlier course, or for a general course on quantitative methods in                                 
ecology. 

• Prerequisites: The module can be taught at two different levels; beginner and advanced. 

– Beginner: High school through early college non-mathematics majors. Basic understanding 
of probability is helpful, but not necessary. 

– Advanced: Intro to proofs or beyond. Understanding of limits, probability, counting, and 
proofs is sufficient. Little to no background in graph theory is needed. 

• Mathematical Fields: Probability, Simulation, Discrete Math, Proof writing, Graph               
Theory. 

• Application Areas: Invasive species threaten local ecology as well as renewable                   
economic resources systems (in this case, the timber industry). Local species may be over-consumed                           
or out-competed for food sources: extinctions result in gaps that destabilize greater ecological                         
processes. 
 
  



 
 

• Goals and Objectives: Ideas accessed: probabilistic independence 
Simulation as a tool to reach an initial hypothesis idea of threshold boundary between two regimes 
variation due to connectivity interplay of connectivity and probability compelling pointers to 
unsolved problems 
 

• Technology/Software Needs: If available, Excel or internet access allows for 
demonstrations, otherwise 

 
Time: This self contained module is designed to be completed within 50-90 minutes. Suggested 

content based on level: 

 
 
 
 

High school, beginning undergraduate, non-math major: 
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1 Math  Background 

 

This module uses the basic probability rules given below. You can skip this section if you already 
know basic probability. 
 
• Independence: if event A has probability pA and event B has probability pB and events A                             
and B are independent (that is, whether A happens does not change the probability B happens), then                                 
the probability of A and B is pApB . 

• For two independent events A and B, the probability that either A happens or B happens (or                                 
both happen) is pA + pB − pApB . 

 

 
 
   



 
 

2 Introduction: Invasive Species and Percolation 

 

2.1 Invasive Species 

 

The term invasive species is used to describe animal or plant species that have colonized regions                             
outside where they are naturally found. The introduction of non-native species can cause imbalance                           
in the environment: if the new species finds a good food source and has no natural predators, its                                   
numbers can explode. There are many examples where this explosion of population causes major                           
problems including driving local species to extinction either through over-consumption or through                       
direct competition for resources. 

This unit focuses on the Emerald Ash Borer. 
 

 

(Image from Tennessee Government page 
http://www.tn.gov/agriculture/regulatory/eab.shtml) 

 
● A beetle introduced to North America in the 1990s, has spread to 15 states so far. The ash 

borer probably hitch-hiked to Michigan on wood products imported from Asia. 
● Spread of the Ash Borer: The ash borer is able to fly short distances from infested 

trees to susceptible ash trees. The ash borer infests all species of ash trees in North America, 
killing trees approximately three years after initial infestation. 

● So far this invasive species is estimated to have killed 50-100 million ash trees.  It is 
considered one of the most destructive non-native insects in the United States. 

● The timber industry produces approximately 25 billion dollars of ash saw timber per year, 
and ash trees are planted extensively in urban neighborhoods throughout the Southeast. The 
ash borer threatens an estimated 7.5 billion ash trees in North America. 

 
Problem: We will use ideas from probability to explore how the Emerald Ash Borer will spread                              
through a (stylized) landscape. 

 
Modeling: Foresters have determined that the probability that a tree infested with ash borers will                            
spread the infection to nearby trees depends on the distance between the two trees. For now,                               
assume that an infested tree will have one chance to infest the trees near it before it dies, and that                                       
the ash borers remaining at a dead tree will die from lack of food. 
 

http://www.tn.gov/agriculture/regulatory/eab.shtml)
http://www.tn.gov/agriculture/regulatory/eab.shtml)


 

A mathematical model for the spread of an invasive species like the emerald ash borer is percolation. 
The word percolate comes from the Latin word percolare, meaning to be filtered through.  Older  adults 
and  outdoor  enthusiasts  may be  familiar  with  the  word  percolate because they have made 
coffee using this process.  Others may have used the word percolate to describe the way an idea 
gradually spreads through a social network.  Scientists use the word percolate to describe the 
movement of a fluid through a porous medium, such as water through soil, shale, or sandstone. 

Percolation theory can be used to study the movement of anything that spreads from one discrete                               
location to another, ignoring all the space in between. For example, the emerald ash borer moves                               
from one tree to another. Many other applications are active areas of research in applied                             
mathematics and engineering. Your teacher can give you some examples, or you can research them                             
for yourself. 
 
Class Discussion - Stop and Think: I live on one end of a street with 3 ash trees lining it                                 
(the last tree is in my yard). The trees are spaced 20 feet apart. Suppose that the probability of ash                                       
borers infesting a tree within 25 feet of an infested tree is 0.6 but that if the distance is more than 25                                           
feet then the probability of transmission is 0. 

 
I notice that the tree at the other end of the street is infected. The following figure illustrates this                                     
situation, where the X indicates the infested tree. 
                                                    A                      B                      C 

 
 
We want to determine the probability of my tree becoming infected. Before reading on, discuss how                               
to calculate the solution and explain your reasoning to each other. 
 
For my tree to become infested, the ash borers must first move from the infested tree A to the                                     
middle tree B, then from the middle tree B to my tree C. The probability of moving from the                                     
infested tree A to the middle tree B is 0.6. The probability then of moving from the middle tree B                                       
to my tree C is another 0.6. Therefore, the probability of traveling along the path of trees from A to                                       
B to C is  

.6 .6 .36.0 × 0 = 0  
 
Suppose there is a longer row of trees along the street, say a row of four trees as in the diagram                                         
below. 
 
 
 
If tree A is infested and my tree is again at the end of the street, answer each of the following                                         
questions: 

1. Why is there only one viable path for the infestation to travel? That is, why isn’t                               
A-B-C-B-C-D a viable path? 
 

2. Explain why the probability that my tree will become infested is 0.216. What path did you                               
follow to get this answer? 



 

 
If there are trees on the street (so that there are connections from the first tree to the last      n + 1                   n                  
tree), what is the formula to calculate the probability of the last tree becoming infested if the first                                   
tree is infested? 
 
Note that for the infestation to spread to a susceptible tree there must be a viable path from the                                     
infested tree to a susceptible tree. If the trees are all in one row, there is only one viable path.                                       
Suppose now that a neighboring parallel street also has 3 ash trees, as shown in the following figure.   
 

                                               A                  B                    C 

 
                                                               D                          E                          F 
 
Such a rectangular array of points (or vertices or nodes) is called a lattice of points, or just a lattice. The                                         
above lattice is a 2 by 3 lattice. An  lattice has  rows and  columns of vertices.n × m n m  
 
We now introduce a rule to make viable paths which will simplify our calculations. The rule is that                                   
we may only move from one vertex to the next in the directions to the right or down. The length of                                         
this path will be the number of edges traversed. Assuming the same separation distances and                             
probability of transmission as in the linear example, answer the following questions: 
 

1. Why is A-B-E-F a viable path for the transmission of the infestation from tree A to tree F? 
Answer: Because all of the edges are traversed either to the right or down. 
 

2. Why is A-D-E-B-C-F NOT a viable path for transmission of the infestation from tree A to                               
tree C?  
Answer: Because the edge E-B is traversed in the up direction, rather than right or down. 
 

3. List the three different viable paths of infestation transmission from tree A to tree C.  
Answer: A-D-E-F, A-B-E-F, and A-B-C-F. 

 
4. What do the three paths have in common? 

Answer: They all have length 3. 
 

5. One viable path is A-B-C-F. What is the probability of the infestation traveling along path                             
A-B-C-F? 
Answer: The probability is calculated as Pr(A-B-C-F) = Pr(A-B)·Pr(B-C)·Pr(C-F), since the                     
probability of each edge being traversed is 0.6, then Pr(A-B-C-F) = (0.6)(0.6)(0.6) = 0.216 

 



 

6. Another viable path is A-D-E-F. What is the probability of the infestation traveling along                           
path A-D-E-F? 
Answer: The probability is calculated as Pr(A-D-E-F) = Pr(A-D)·Pr(D-E)·Pr(E-F), since,                   
again, the probability of each edge being traversed is 0.6, then Pr(A-D-E-F) = (0.6)(0.6)(0.6)                           
= 0.216 

 
7. What is the probability of the infestation traveling along the other viable path? 

Answer:  By this point students will have hopefully noticed a certain sameness of these  
calculations and realize that Pr(A-B-E-F) is also 0.216. 

 
8. Now that the probability has been calculated for each of the three possible paths, can we use                                 

those probabilities to calculate the actual probability of the infestation traveling from tree A                           
to tree F? 
Answer:  The answer is given in the text below, but this is a good place to instigate a class  
discussion on how the students think they would calculate the probability of tree A’s  
infestation traveling to tree F.  

 
Because we are assuming the infestation will travel along a single path, and that these paths are                                 
distinct from each other, we can estimate the probability that tree F will eventually be infested, if                                 
tree A is infested, as 
 

r(F  is infested) r(A ) r(A ) r(A )P = P − B − C − F + P − B − E − F + P − D − E − F  
 

r(F is infested) .216 .216 .216 .648P = 0 + 0 + 0 = 0  
 
 

2.2 Percolation 

 
The previous examples are known as bond percolation because it is the bonds between the vertices                               
which transmit the disease from one vertex to another. We say a graph percolates through a lattice (or                                   
just percolates) if there is a connected path from a vertex at one side of the lattice to a vertex on the                                           
opposite side. This is referred to as “top-down percolation” or “left-right percolation,” depending                         
on the orientation of the lattice. This can represent many examples, such as an infestation spreading                               
through an orchard of trees, a wildfire spreading through a forest, contaminants spreading through                           
an ecosystem, or a disease spreading through a population. 

Although it was easy to calculate the probability that a particular tree could be infested in the 
example in the previous section, if the lattice is large, you can imagine how tedious it can be to find 
and keep track of the many possible paths for the borers to follow from the infested tree.  Imagine 
how difficult this calculation would be if you were working with the trees in the neighborhood 
shown below! 
 
 
 
 
 



 

                                             A             B             C             D             E 

 
                                             F             G             H              I               J 
 
Class Discussion - Stop and Discuss: Spend two or three minutes counting the paths in this 
lattice that start at bottom and percolate to the top. Is there a way we can methodically find the 
number of paths so that we are sure to count them all, without recounting any? Let’s start by only 
counting paths that only move to the right and upward (see the diagram below).  
 

 
 
Use the following questions to help organize the process of counting the paths. 
 

1. How many “right-up” paths are there from vertex J to vertex E? 
 
Answer: If we are only moving right or up, there is only one path from J to E, straight up. 
 

2. Suppose the probability of an infestation moving along an edge of the lattice is . What isp  
the probability of a “right-up” infestation moving from J to E? 
 
Answer: There is only one right -up path from J to E. It is of length 4, so the probability is 

. p4  
 

3. How many “right-up” paths are there from vertex I to vertex E? Are the same number of 
right-up paths from vertex H to vertex D, vertex G to vertex C, and vertex F to vertex B? 
 
Answer: There is exactly one step to the right and four steps up. This can be organized 
according to step to the right. There are five places where the one move to the right could 
be taken. So, there are five “right-up” paths from I to E. The “distances from H to D, G to 



 

C, and F to B are the same distances as from I to E, so the number of right-up paths will be 
the same. 
 

4. Suppose the probability of an infestation moving along an edge of the lattice is . What isp  
the probability of a “right-up” infestation moving from I to E? 
 
Answer: There are five right-up paths from I to E. Each of those paths is of length 5. So the 
probability is .pp5 + p5 + p5 + p5 + p5 = 5 5  
 

5. How many “right-up” paths are there from vertex H to vertex E? Are there the same 
number of right-up paths from vertex G to vertex D and from vertex F to vertex C? 
 
Answer: There are two steps to the right and four steps up. Again, the counting can be 
organized according to the steps to the right. The two right steps can either be taken 
together or separately. If taken together, There are five places where the two right steps 
could be taken. There are five “right-up” paths from H to E with two right steps taken 
together. If the two right steps are taken separately, the second right step occurs “above” the 
first right step. If the first right step is the first overall step, there are four places where the 
second right step can occur. If the first right step is the second overall step, there are three 
places where the second right step can occur. As this continues, there are 
 
                                        (5, ) 55 + 5 + 4 + 3 + 2 + 1 = 5 + C 2 = 1  
 
right-up paths from H to E. Again, the distances from G to D and from F to C are the same 
as the distance from H to E, so the number of paths and probability are the same. 
 

6. Suppose the probability of an infestation moving along an edge of the lattice is . What isp  
the probability of a “right-up” infestation moving from H to E? 
 
Answer: There are 15 right-up paths from H to E. Each of those paths is of length 6. So the 
probability is .5p1 6  
 

To count the number of paths from vertex G to vertex E requires careful reasoning. There are three 
horizontal right steps in each path from G to E. These three horizontal steps can be taken all at 
once at the same “level,” or two of the horizontal steps can be at the same level and one at a 
different level, or all three of the horizontal steps can be at different levels. If all three horizontal 
right steps are at the same level, there are choices for which level the horizontal steps(5, )C 1 = 5  
will take place. If the three horizontal right steps are at two different levels, then there is either one 
step then two steps at a higher level or there are two steps then one step at a higher level. Either 
way, we choose two out of five levels,  and then multiply by 2, . If the(5, )C 2 C(5, ) 02 2 = 2  
horizontal steps are all at different levels, by a similar argument, there are  paths with(5, ) 0C 3 = 1  
the horizontal steps at all different levels. Therefore, there are  
 

(5, ) (5, ) (5, ) 0 0 5C 1 + 2 × C 2 + C 3 = 5 + 2 × 1 + 1 = 3   
 
right-up paths from vertex G to vertex E. Likewise, because the paths are the same length, there are 
35 right-up paths from vertex F to vertex D. Since each path from G to E is of length 7, the 
probability of an infestation moving from G to E (or from F to D) is .5p3 7   



 

 
By a similar argument, there are  right-up paths(5, ) (5, ) (5, ) (5, ) 0C 1 + 3 × C 2 + 3 × C 3 + C 4 = 7  
from vertex F to vertex E. The probability of an infestation moving from F to E is .0p7 8  
 
Therefore, the total probability of an infestation percolating along a right-up path is calculated by 
 
        0 right steps:     pp4 + p4 + p4 + p4 + p4 = 5 4  
        1 right step:      p 0p4 × 5 5 = 2 5  
        2 right steps:     5p 5p3 × 1 6 = 4 6  
        3 right steps:     5p 0p2 × 3 7 = 7 7  
        4 right steps:     0p1 × 7 8  
 
for a total of .(p) 0p 0p 5p 0p pf = 7 8 + 7 7 + 4 6 + 2 5 + 5 4  
 
The polynomial  is called the probability of percolation. We will describe this in more detail in(p)f  
the next section.  
 
Consider an n x n lattice.  Let’s calculate the “right-up” probability of percolation. Adapting the 
method from the previous example, the case for general  isn > 0  
 
        0 right steps:     pp4 + p4 + p4 + · · · + p4 = n n−1  
        1 right step:      n ) p (n )p( − 1 × n n = n − 1 n  
        2 right steps:     (n )[ − 2 × (C(n, ) (n, ))1 + C 2 ] pn+1  

        .
..  

        k right steps:     n )  ( − k C(n, ) k ) (n, )[ 1 + ( − 1 (n, )(∑
k−1

i=2
C i ) + C k ] pn+k−1  

        .
..  

        n right steps:      C(n, ) n ) (n, )[ 1 + ( − 1 (n, )( ∑
n−1

i=2
C i ) + C n − 1 ] p2n−1  

 
and  
 

(p) pf n = n n−1 + (n(n )p )− 1 n + ( (n ) )[ − 2 × (C(n, ) (n, ))1 + C 2 ] pn+1 + · · · +  

 (n )( − k C(n, ) k ) (n, )[ 1 + ( − 1 (n, )(∑
k−1

i=2
C i ) + C k ] pn+k−1) +  

 C(n, ) n ) (n, )[ 1 + ( − 1 (n, )( ∑
n−1

i=2
C i ) + C n − 1 ] p2n−1  

 
Of course, the polynomial  for this example is still incomplete, since we were only considering(p)f  
right-up paths. Suppose we consider paths in the lattice that can move up and down, but still only 
move to the right. Then the calculation for  becomes even more complicated. For example, the(p)f  
first two calculations (0 right steps and 1 right step) remain the same, but 2 right steps has more 
calculations: 



 

        0 right steps:     pp4 + p4 + p4 + p4 + p4 = 5 4  
        1 right step:      p 0p4 × 5 5 = 2 5  
        2 right steps:     5p 5p3 × 1 6 + 4 × p8 + 3 × p10 + 2 × p12 + p14 = 4 6  
        3 right steps:     52 × 3 7 + · · ·  
        4 right steps:     0p1 × 7 8 + · · ·  
 
 The probability of percolation will depend on the value of , the probability of transmission.p  
 
Class Discussion - Stop and Discuss: What do you suppose will happen for larger values of ?p  
Smaller values of ? Will larger or smaller values of  more likely lead to percolation?p p  
 
Controlling the probability of transmission can help control whether an infestation will percolate 
through a lattice. For example, the farther apart trees are planted, the less likely it is that an 
infestation will percolate through an entire orchard or ecosystem. 
 
Teacher’s note:  We hope that this will lead to a method, preferably numerical, to count the number 
of paths, but it is not critical that it does.  What is critical is that students appreciate the fact that 
increasing the number of nodes, increases even more quickly the number of paths through the 
graph.   



 

2.3 Percolation Threshold 

 

In the previous section we made an attempt to calculate the probability of percolation for a                                5 × 5
lattice, which proved to be a cumbersome process. We then briefly tried to calculate the probability                               
of percolation for an n x n lattice. This was an even more cumbersome calculation. Lattices are not                                   
the only graphs for which we wish to calculate the probability of percolation. In general, the                               
probability of percolation could also be calculated for a planar graph. A planar graph is a graph that                                   
can be embedded in the plane. That is, the vertices and edges can be redrawn so that the edges                                     
intersect only at their endpoints. For example, the graph on four vertices below can be redrawn so                                 
the two “diagonal” edges do not intersect. 
 

  
 
Thus, we can generalize the concept of a lattice to include planar graphs like the one below. 
 

 
 
The calculation for the probability of percolation for a planar graph on vertices, represented by                        n        

, can be as cumbersome or difficult as the standard lattice. Because probability of percolation(p)f n                              
is difficult to compute directly, we often look for methods to estimate this through indirect                             
methods.  
 
In the next section we will discuss one way in which can be estimated through simulation.                      (p)f n            
Before doing so, let’s consider another example. For each value of and any positive                      0 ≤ p ≤ 1      



 

integer , we have a probability of percolation on a planar graph with n vertices and with a  n                                  
transmission probability of .  Technically speaking we definep  
 

.(p) rf n = P (planar graph on n vertices, given the transmission probability is p)  
 

Stop and Think: Suppose the probability of percolation is given by  
 

(p)f n =
 ( 2

3p ˆ)n

1+  ( 2
3p ˆ)n  

1. Let . What happens to the value of for increasing values of ? Filling in the  p = 6
1               (p)f n           n        

table below will help answer this question. 
 

Value of n   Value of (p)f n  

2  .0588241
1+( )4

1 2 = 0  

3  .0153851
1+( )4

1 3 = 0  

4  0.003891 

5  0.000976 

6  0.000244 

7  0.000006 

8  0.000002 

 
This concept is referred to as the limit of  as  approaches infinity, written .(p)f n n (p)lim

n→∞
f n  

Answer: The students should note that the value of approaches 0 as the value of                  (p)f n               n  
increases. If students are familiar with limit notation, the students can explore this concept                           
further. 
 

2. Let . What happens to the value of for increasing values of ? Filling in the  p = 6
5               (p)f n           n        

table below will help answer this question. 
 

Value of n   Value of (p)f n  

2  .6097561
1+( )4

5 2 = 0  

3  .6613761
1+( )4

5 3 = 0  



 

4  0.709421 

5  0.753194 

6  0.792303 

7  0.826641 

8  0.856331 

 
Answer: The students should note that the value of approaches 1 as the value of                  (p)f n               n  
increases. If students are familiar with limit notation, the students can explore this concept                           
further. 

 
Note that when , and when , . This would suggest there is      p = 6

1   (p)lim
n→∞

f n = 0       p = 6
5   (p)lim

n→∞
f n = 1            

a threshold value for the probability above which will approach 1, and below which            p       (p)f n             (p)f n
will approach 0. In this example, what do you suppose that threshold value is? How would you                                 
determine the threshold value?  
 

Answer: The value is  - since , a constant value.3
2  f n ( 3

2) = 2
1   

 
Extending this example to the general case, if  is the probability of percolation, we can ask(p)f n  
 

1. If  is close to 0, what is the value of ?  What about when  is close to 1?p (p)f n p    
 

2. What happens if  gets large?n  

 
We are now ready to more formally define the percolation threshold. The percolation threshold is a                               
value  (if one exists) such that0 ≤ pc ≤ 1  

 

 lim
n→∞

f n (p) = { 1 if  p>pc
0 if  p<p  c }  

 

In non-technical terms, the percolation threshold is the critical point of a very large (infinite) graph;                              
if the transmission probability is below the threshold, then the graph will not percolate, if it is above                                   
the threshold, then the graph will percolate. 

Often times there is no particular critical value, but there is a percolation function  
lim
n→∞

f n (p) = f (p) .  

 
 

3 Simulation In-class Activity 



 

 

3.1 Simulation Background and Notes 

 

In an activity with your class, you will learn an alternative way to study the transmission of an                                   
invasive species through a grid graph like the one above. You will use a spinner or other random                                   
outcome to decide whether or not each line segment will allow borers to spread, and then look for                                   
paths in the graph. This method is called a simulation, because you are “acting out” the random                                 
process of spreading from tree to tree. A simulation requires many repetitions of the process to                               
produce a reliable estimate of the answer. 

 
Complete section 3.2 as a handout for all the students. Then graph the results of the simulation as a                                     
function of the transmission probability p. (Note: The probability of the graph percolating is small                             
for p < .5 and large for p > .5. So you will most likely see a shift in the simulation near p = .5.) 

Bond percolation is easily simulated by randomly assigning each bond, or edge, in a square lattice or 
other graph to be open with probability p. By simulating percolation in a finite graph, students can 
quickly collect data that allows them to conjecture the value of the asymptotic phase transition 
probability.  Handouts are provided for both bond and, as an extension, site percolation. 

Collectively, the class should explore a range of probabilities between 0 and 1, being sure to include                                 
the value 0.5. A rule of thumb is that each probability should be simulated at least 5 times. You                                     
might rule out very small probabilities and very large probabilities after discussing threshold                         
behavior with the class. 

In a small class, you may wish to have every student simulate percolation for each probability value.                                 
In larger classes, you can accomplish the task more quickly by dividing into groups, and having each                                 
group do the simulation with a different probability. Electronic methods of simulation enable the                           
class to explore larger lattices, a wider range of probabilities, and perform more replications of each.                               
Alternatively, you could hand out strips of paper with pre-computed simulations, done with either of                             
the methods described below, or project these strips of pre-computed simulations on the board for                             
the whole class to evaluate together. 

Choose one of the following methods to perform the simulation. For each probability value, track                             
the proportion of simulations for which percolation occurs (there is an open path from any node at                                 
the top of the lattice to any node at the bottom). Put the results in a table like the following (with                                         
idealized results) on the board: 
 
  



 

 
P(open)  Percolation Proportion 
0.1  0 
0.2  0 
0.3  0 
0.4  0.1 
0.5  0.6 
0.6  0.9 
0.7  1.0 
0.8  1.0 
0.9  1.0 

 

The module asks students to graph the results, which should look something like the graph below: 
percolation probability 
 
 
 
1 
 
 
 
 
 
 
 
 
 

p 
 
 
 

Simulation Method 1: Pencil and Paper (Handout) Students use a physical (game-                
board style) spinner with a fraction of the circle colored black corresponding to their assigned                             
probability. (Note, however, the significant time investment required to build and flick physical                         
spinners. A less time-consuming option that still lets students actively participate in the simulation is                             
to use a random number generator. Use the rand() command in Excel, or use an online random                                 
number generator (for example, http://www.random.org/decimal-fractions/) where they             
can generate all their random numbers to determine whether each bond is open or closed, and fill in                                   
with a solid line each open bond. Closed bonds are left as is. Once each bond is determined to be                                       
open or not, the students must determine by eye whether or not there is percolation. 

Simulation Method 2: Excel Workbook Open the Excel file BondPerc.xlsx. Each time                  
the probability of a bond being open is changed, the entire lattice is redrawn with the simulated                                 
open and closed bonds. Students must determine by eye whether or not there is an open path,                                 
consisting of adjacent colored edges, from any node at the top of the lattice to any node at the                                     
bottom of the lattice. 

http://www.random.org/


 

With a smaller class, you might want to use BondPercExplore.xlsx, which lets each student with a                               
computer generate 3 results for each of 4 different probabilities. Note that these probabilities can be                               
modified as in BondPerc.xlsx. 

Discussing the graph: First, look at the extremes: 

 
If p is very close to 0, there are hardly any edges, and the graph is not likely to percolate.  

If p is close to 1, there are lots of edges, and the graph is very likely to percolate. 

What is happening between these two extremes? 

 

 

• When , the graph does not percolatep < 2
1  

 
 

• When , the graph does percolate.p > 2
1    

 

 
This simulation is illustrating the concept of percolation threshold, a common flavor of                        
results in the theory of random graphs. 

If a particular probability is above pc then one property is exhibited, if the probability is below pc,                                  
some other property is exhibited. We say pc is the threshhold value of the property. In our case,                                 
the property is “percolation happens.” 

Q: What happens when the number of lattice points gets larger?  

A: The graph becomes increasingly sharp. 

 
 
 
  



 
 

3.2 Bond Percolation Simulation Example 

 

Use the spinner for each of the 40 edges on the graph. If you spin and land on black, color the edge.                                           
You must go in order (top to bottom, left to right). This represents an open edge. An example is                                     
done for you. 
 
 

 
 
 
Example: 

 
 

Can you find a path from the top to the bottom through the colored (open) edges? If you can, then 
your graph percolated. 

Did your random graph percolate? (Can you find a path from the top to the bottom through the 
colored (open) edges?) 

 
What do you think is the bond percolation threshold?  
 
   



 
 

3.3 Site Percolation Simulation Example 

 

Use the spinner for each of the 36 blocks on the graph. If you spin and land on black, fill in the                                           
block. You must go in order (top to bottom, left to right). An example is done for you. 
 
 

      

      

      

      

      

      

 
 
 
 

      

      

      

      

      

      
 

Can you find a path from the top to the bottom through the black boxes (open sites)? You may only 
move horizontally or vertically, not diagonally. If you can, then your graph percolated. 

 
What do you think is the site percolation threshold? 
 
   



 
 

4 Other Applications and Resources 

 

Other Applications: You may use the following as discussion, handouts, or an assignment. 
 
 

4.1 Other  Applications 

• Spread of disease in trees: 
Consider a farmer who would like to plant the trees in an orchard in order to minimize the spread of                                       
disease between trees, yet maximize the yield from the orchard. The increased distance between                           
trees represents a smaller probability of the spread of a disease. What is the optimal distance and                                 
lattice structure desired? 

• Forest Fires: 
Often forest rangers would like to be able to predict how far and how quickly a fi would be able to 
spread.  Giving a time component to a simple percolation model allows forest rangers to make these 
predictions based on wind speed and density of the forest. 

• Oil Field: 
Often gas or oil is found insides porous rocks. The pores in rock form a network in which the oil or                                         
gas flows. Percolation models are used to predict how much oil or gas can be found in rocks of                                     
different porosity. 

• Electrical network grid: 
Electricity is passed from one component to another through connections (edges) which could                         
represent power lines. For example, there is a nice structure for the power grid in a neighborhood of                                   
houses, or they may represent larger power lines connecting neighborhoods in a particular city. In                             
order for power to pass from one city to the next, the power must percolate through the                                 
connections. What configuration should we use for the network in order to make it reliable yet cost                                 
effective? 

• Communication network and social media: 
Recently information has been able to spread through the use of social media and communication                             
networks. Often the spread of text messages, tweets, etc can be analyzed through the use of a                                 
percolation network on graphs which model social network structures. The model percolates as                         
information is passed from one person to another. 

• Epidemiology: 
The transmission of disease through a particular species is of great importance. If a particular                             
individual or group becomes infected, how long will the disease propagate? Transmitability and                         
virulence are two key factors in this model. The big question: Will there be an epidemic? 

• Child immunization: 
Children that get immunizations for particular diseases act as a buff for the spread of disease. If the                                   
percentage of children who receive a particular vaccine drops below a particular point, then the                             
probability of an outbreak in children who are not immune increases dramatically. 
 
  



 
 

• Gelatinous substance: 
As a substance forms, bonds are made between neighboring chemicals. This formation allows the                           
liquid to become a gelatinous substance. For example: the process of boiling an egg. These small                               
clusters eventually bond together to form larger and larger molecules. 

• Structural integrity of material: 
Most materials have imperfections in them. These imperfections or impurities often make a                         
substance weaker. Under a large amount of stress a crack often forms between these impurities. To                               
percolate, the substance would have a crack from one end to the other, thus breaking the substance.                                 
How ‘pure’ must we make our material in order to have  a  particular  strength? 

• Groundwater flow: 
As water flows through the soil, it percolates through the soil layers by moving through cracks and                                 
capillaries. This flow of water can be studies by a percolation model for diff     t types of soils. 

• Rumors: 
Given a social network structure, if a rumor is started with an individual how far is will it percolate?                                     
The social network structure would be highly dependent on the number of friends each person has                               
and the strength of the friendship. 

• Others:  Lightning, Brine Ice Formation, underground lava flow. 
 
 

4.2 Other Resources 

 

References: 

For more information on percolation we suggest the following texts.  This list is not meant to be an 
extensive list, but serve as a beginners reference list. 

 
1. ‘Introduction to Percolation Theory’ - Dietrich Stauff and Ammon Aharony 
 
2. ‘Percolation’ - Bela Bollobas and Oliver Riordan 
 
3. ‘Percolation’ - Geoffrey Grimmett 
 
4. ‘Applications of Percolation Theory’ - M Sahimi 

 
In addition, you can find several apps online which demonstrate different percolation models. 
 
 

 

 

 

 

 

 
 



 

5 Teacher’s Notes 

5.1 Generalizations and Brief History 

 

Bond Percolation: 

The mathematical concepts of percolation were first introduced by Broadbent and Hammersley                       
(1957: “Percolation processes I. Crystals and mazes.”) Given a n × n lattice, what is the probability                                
a path forms from the top of the lattice to the bottom of the lattice if each edge is present with                                         
probability p independent of the other edges? As is often the case, it is easier to compute the                                   
probability of percolation (forming an infinite cluster) assuming an infinite lattice structure, i.e. n                           

tends to infinity. Based on this model, for any given value of p, Kolmogorov’s zero-one law tells us                                   
that the lattice either percolates with probability 1 or 
0. Therefore there is some critical value pc so that if p < pc, then the model will percolate with                                      
probability 0, and if p > pc, then the model will percolate with probability 1. In a very celebrated                                     
result, Harry Kesten (1982 - Percolation theory for mathematicians) proved that the critical value for                             
the square lattice Z2 was pc = 1/2. 

Site Percolation: 

A similar questions can be asked for site percolation; each site is open with probability p and closed                                   
with probability 1 − p. Is there a path from the top of the lattice to the bottom through open sites?                                        
For the square lattice Z2, bounds have been able to show that pc ≈ .59, although an exact answer is                                     
still unknown! (This is a great way to show students that mathematics is alive and people are still                                   
working on very interesting and useful problems.) 

Other Lattice Structures: 

Other generalizations include different lattice structures. Many of these lattice structures have exact                         
results while others do not. In most simple cases, if the number of neighbors increases, this implies                                 
there are a larger number of possible percolation paths, and therefore the value of pc tends to                                
decrease. However this may not be the case on lattice structures which have some vertices have very                                 
few neighbors. The wikipedia page on percolation threshold has a very comprehensive list of 2D                             
lattice structures and bond and site percolation thresholds and bounds.                   
(http://en.wikipedia.org/wiki/Percolation_threshold# 
Thresholds_on_other_2d_lattices) 

Higher Dimensional Variants: 

Percolation models have also been studied in higher dimensional variants. For example, consider                         
the 3D square lattice where each vertex on the interior has 6 neighbors. Although exact values and                                 
bounds are more diffi to prove, there have been some results for simple structures. In almost all                                 
cases, the higher dimensional percolation thresholds pc decrease significantly because of the                      
increased number of possible paths because of the lattice structure. 

 

http://en.wikipedia.org/wiki/Percolation_threshold

