Applied Combinatorics
 by Fred S. Roberts and Barry Tesman

Answers to Selected Exercises ${ }^{1}$

Chapter 1

1. | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 2 | 3 | 4 | 1 |
| 3 | 4 | 1 | 2 |
| 4 | 1 | 2 | 3 | ;

2			3							1 2 3	3 1 2			1 3 2	3 2 1				2					3
		2	3 2	2		3 1 2	2 3	3 1 2		1 2 3	2 3	3 2 1		2	3			1	1 2 3		3			

3. Let row 1 be: $12 \cdots n$. Row 2 is gotten by taking the first element (1) of row 1 and moving it to the end of the row. Row 3 is gotten from row 2 by taking the first element (2) of row 2 and moving it to the end of the row. Continue until you have n rows.

4(a). $\left.\begin{array}{|ccc|}\hline 3 & 2 & 1 \\ 1 & 3 & 2 \\ 2 & 1 & 3 \\ \hline\end{array} ; \begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right] ;$
4(b). $\left.\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2\end{array}\right] ;\left[\begin{array}{llll}a & b & c & d \\ c & d & a & b \\ d & c & b & a \\ b & a & d & c\end{array}\right] ;$
5. $0,1,00,01,10,11,000,001,010,100,011,101,110,111$;

[^0]6. See problem 5 and $0000,0001,0010,0100,1000,0011,0101,0110,1001,1010$, $1100,0111,1011,1101,1110,1111$;

7(a). no - there are only 12 such strings;
7(b). yes - there are 27 such strings;
8. There are 84 such strings: there are 4 of length one; there are 16 of length two; there are 64 of length three;
9. LLLL, LLLS, LLSL, LSLL, SLLL, LLSS, LSLS, SLLS, LSSL, SLSL, SSLL, LSSS, SLSS, SSLS, SSSL, SSSS;
10. Our conclusion would not change significantly. There are roughly 3.15×10^{7} seconds per year and 100 billion equals 10^{11}. So, $3.15 \times 10^{7} \times 10^{11}$ or 3.15×10^{18} networks could be analyzed in a year. Then the number of years it would take to check 6×10^{33} networks is

$$
\frac{6 \times 10^{33}}{3.15 \times 10^{18}} \approx 1.9 \times 10^{15}
$$

11.

12(a). No assignment exists. Each of Calculus, History, and Physics must get a different exam time since they overlap with one another;

12(b). time 1: English and Physics; time 2: Calculus; time 3: History;
12(c). No assignment exists. Each of Calculus, History, Physics, and Economics must get a different exam time since they overlap with one another;
12(d). time 1: English and Physics; time 2: Calculus; time 3: History; time 4: Economics;
13. If Economics is Wednesday and Transportation is Tuesday then both Housing and Health must be Thursday - this is not possible. Or, if Economics is Wednesday and Transportation is Thursday then both Housing and Health must be Tuesday - again this is not possible.

14(a). If English must be Thur. AM, then Calculus must be Wed. AM. But then History and Physics must be Tues. AM - this is not possible.

14(b). Wed. AM: English; Tues. AM: Calculus; Wed. AM: History; Thur. AM: Physics; Mon. AM: Economics.

Answers to Selected Exercises
15. Two of the four instructors can get their first choice. Assign a different morning to each of the Calculus, History, and Physics exam times. Then assign Tuesday morning to English.

[^0]: ${ }^{1}$ More solutions to come. Comments/Corrections would be appreciated and should be sent to: Barry Tesman (tesman@dickinson.edu) or Fred Roberts (froberts@dimacs.rutgers.edu).

