Applied Combinatorics
 by Fred S. Roberts and Barry Tesman

Answers to Selected Exercises ${ }^{1}$

Chapter 3

Section 3.1.
$\mathbf{1}(\mathbf{a}) . V=\{$ Chicago (C), Springfield (S), Albany (A), New York (N), Miami (M) $\}$
1(b). $A=$
$\{(\mathrm{C}, \mathrm{S}),(\mathrm{S}, \mathrm{C}),(\mathrm{C}, \mathrm{N}),(\mathrm{N}, \mathrm{C}),(\mathrm{A}, \mathrm{N}),(\mathrm{N}, \mathrm{A}),(\mathrm{C}, \mathrm{M}),(\mathrm{M}, \mathrm{C}),(\mathrm{N}, \mathrm{M}),(\mathrm{M}, \mathrm{N})\} ;$
4(b). In $G_{3}, E=\{\{u, v\},\{v, w\},\{u, w\},\{x, y\},\{x, z\},\{y, z\}\} ;$
17(a). yes;
17(b). no;
19. 15;
20. 32;
23. no;
24. yes.

Section 3.2.

1(d). yes;
5. $D_{4}:$ no; $D_{6}:$ yes;

6(a). no;
6(e). yes;
9(b). $D_{4}:$ yes; $D_{8}:$ no;
10(c). $D_{4}:$ yes; $D_{8}:$ yes;
13. $D_{8}:\{p, q, r, s, t\},\{u\},\{v\},\{w\}$;
18. Hint: Use induction on the number of vertices;

[^0]
Answers to Selected Exercises

25(a). yes;
30(a). 9;
30(b). $2\binom{n-1}{2}+(n-1)=(n-1)^{2}$.
Section 3.3.
3(a). (b): yes;
3(b). (b): 3 ;
5. no;
8. 4;
18. no;
21. (b):yes;

41(a). 4;
54(b). Z_{n}, n odd, $n \geq 3$;
55(a). $\omega(G)=\alpha\left(G^{c}\right) ;$
$\mathbf{5 4 (b)} . Z_{5}$ plus a vertex adjacent to two consecutive vertices of Z_{5}.
Section 3.4.
1(a). $x(x-1)^{3}$;
2(a). 24;
2(c). 48;
6. $\left[P\left(I_{2}, x\right)-P\left(I_{1}, x\right)\right]\left[P\left(I_{1}, x\right)-2\right]^{2}$;

9(a). $5 \cdot 4!;\binom{5}{2} \cdot 4!;$
11(a). 2;
11(c). (a):0;
13(d). $P(x) \neq x^{n}$ and the sum of the coefficients is not zero;
20(b). yes;
25(c). $(-1)^{n-1}(n-1)!$.

Section 3.5.

4(a). 11;
4(b). 9;
9. $n-k$;
13. 16 ;
16. There are too few edges to have a spanning tree; alternatively, the deleted edge was the only simple chain between its end vertices;
19. 2 if $n \geq 2$, since $2(2-1)^{n-1}>0$ and $1(1-1)^{n-1}=0 ; 1$ if $n=1$;
26. Hint: The sum of the degrees is $4 k+m$ and we have a tree;

29(b). yes;
31(a). 6;
32(b). $\binom{8}{2} 6!=20,160$.

Section 3.6.

2(a). $a: 0 ; b, c: 1 ; d, e, f, g: 2 ; h, i, j, k: 3 ;$
3(a). 3;
4(a). $\{d, e, h, i\} ;$
7 (a). The children of vertex 1 are 2 and 3 and the children of vertex 2 are 4 and 5;
11(a). 6 ;
21. $\left[1 \cdot 2^{0}+2 \cdot 2^{1}+3 \cdot 2^{2}+\cdots+(h+1) 2^{h}\right] / n$, where h is the height;
26. $3412,3142,3124,1324,1234,1234$;
31. 10;

43(b). 240.

Section 3.7.

1(a). For $D_{1}: \begin{aligned} & u \\ & u \\ & v \\ & w \\ & x\end{aligned}\left(\begin{array}{cccc}u & v & w \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right) ;$
2(h). $\begin{aligned} & \quad \\ & \\ & \\ & b \\ & c \\ & d \\ & e\end{aligned}\left(\begin{array}{ccccc}\{a, b\} & \{b, c\} & \{a, d\} & \{b, e\} & \{d, e\} \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right) ;$
7. For $G_{1}: \begin{aligned} & u \\ & v \\ & w\end{aligned}\left(\begin{array}{ccc}u & v & w \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) ;$ 13. For $D_{4}: \begin{gathered}u \\ u \\ v \\ w \\ w \\ x \\ y \\ z \\ z\end{gathered}\left(\begin{array}{ccccc}u & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1\end{array}\right) ;$

21(a). There is a path from i to j if and only if there is a path of length at most $n-1$;
$\mathbf{2 4 (a)} . j$ is in the strong component containing i if and only if $r_{i j}=1$ and $r_{j i}=1$;
30. it gives the number of vertices that edges i and j have in common;
33. yes: take Z_{4} as in Figure 3.22 and append x adjacent to a and b and y adjacent to b and c; repeat with Z_{4} and x as above, but take y adjacent to c and d; relabel edges.

Section 3.8.

4. 7 ;

5(a). $\{a, c, e\} ;$
$\mathbf{5 (f) . ~}\{a, b, d\} ;$
8(a). Let 4 "red edges from one vertex" be $\{a, b\},\{a, c\},\{a, d\},\{a, e\}$. If any one of the edges $\{b, c\},\{b, d\},\{b, e\},\{c, d\},\{c, e\},\{d, e\}$ is red then there will be 3 vertices all joined by red edges. If they are all blue then vertices b, c, d, e are all joined by blue edges;

9(a). Yes;
11(c). 4;

[^0]: ${ }^{1}$ More solutions to come. Comments/Corrections would be appreciated and should be sent to: Barry Tesman (tesman@dickinson.edu) or Fred Roberts (froberts@dimacs.rutgers.edu).

