Applied Combinatorics by Fred S. Roberts and Barry Tesman

Answers to Selected Exercises¹

Chapter 3

Section 3.1.

1(a). $V = \{$ Chicago (C), Springfield (S), Albany (A), New York (N), Miami (M) $\};$ 1(b). A ={(C, S), (S, C), (C, N), (N, C), (A, N), (N, A), (C, M), (M, C), (N, M), (M, N)}; **4(b)**. In $G_3, E = \{\{u, v\}, \{v, w\}, \{u, w\}, \{x, y\}, \{x, z\}, \{y, z\}\};$ 17(a). yes; 17(b). no; **19**. 15; 20. 32; 23. no; 24. yes. Section 3.2. 1(d). yes; **5**. D_4 : no; D_6 : yes; 6(a). no; 6(e). yes; **9(b)**. D_4 : yes; D_8 : no; **10(c)**. D_4 : yes; D_8 : yes; **13**. D_8 : {p, q, r, s, t}, {u}, {v}, {w};

18. *Hint:* Use induction on the number of vertices;

¹More solutions to come. Comments/Corrections would be appreciated and should be sent to: Barry Tesman (tesman@dickinson.edu) or Fred Roberts (froberts@dimacs.rutgers.edu).

25(a). yes;

30(a). 9;

30(b). $2\binom{n-1}{2} + (n-1) = (n-1)^2$.

Section 3.3.

3(a). (b): yes;

3(b). (b): 3;

5. no;

8. 4;

18. no;

21. (b):yes;

41(a). 4;

54(b). $Z_n, n \text{ odd}, n \ge 3;$

55(a). $\omega(G) = \alpha(G^c);$

54(b). Z_5 plus a vertex adjacent to two consecutive vertices of Z_5 .

Section 3.4.

1(a). $x(x-1)^3$; 2(a). 24; 2(c). 48; 6. $[P(I_2, x) - P(I_1, x)][P(I_1, x) - 2]^2$; 9(a). $5 \cdot 4!$; $\binom{5}{2} \cdot 4!$; 11(a). 2; 11(c). (a):0; 13(d). $P(x) \neq x^n$ and the sum of the coefficients is not zero; 20(b). yes;

25(c). $(-1)^{n-1}(n-1)!$.

Section 3.5.

4(a). 11;

4(b). 9;

Answers to Selected Exercises

9. n - k;

13. 16;

16. There are too few edges to have a spanning tree; alternatively, the deleted edge was the only simple chain between its end vertices;

19. 2 if $n \ge 2$, since $2(2-1)^{n-1} > 0$ and $1(1-1)^{n-1} = 0$; 1 if n = 1;

26. *Hint:* The sum of the degrees is 4k + m and we have a tree;

29(b). yes;

31(a). 6;

32(b). $\binom{8}{2}6! = 20,160.$

Section 3.6.

2(a). a: 0; b, c: 1; d, e, f, g: 2; h, i, j, k: 3;

3(a). 3;

4(a). $\{d, e, h, i\};$

7(a). The children of vertex 1 are 2 and 3 and the children of vertex 2 are 4 and 5;

11(a). 6;

21. $[1 \cdot 2^0 + 2 \cdot 2^1 + 3 \cdot 2^2 + \dots + (h+1)2^h]/n$, where h is the height;

26. 3 4 1 2, 3 1 4 2, 3 1 2 4, 1 3 2 4, 1 2 3 4, 1 2 3 4;

31. 10;

43(b). 240.

Section 3.7.

21(a). There is a path from *i* to *j* if and only if there is a path of length at most n-1;

24(a). *j* is in the strong component containing *i* if and only if $r_{ij} = 1$ and $r_{ji} = 1$;

30. it gives the number of vertices that edges i and j have in common;

33. yes: take Z_4 as in Figure 3.22 and append x adjacent to a and b and y adjacent to b and c; repeat with Z_4 and x as above, but take y adjacent to c and d; relabel edges.

Section 3.8.

4. 7;

5(a). $\{a, c, e\};$

 $5(f). \{a, b, d\};$

8(a). Let 4 "red edges from one vertex" be $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{a, e\}$. If any one of the edges $\{b, c\}$, $\{b, d\}$, $\{b, e\}$, $\{c, d\}$, $\{c, e\}$, $\{d, e\}$ is red then there will be 3 vertices all joined by red edges. If they are all blue then vertices b, c, d, e are all joined by blue edges;

9(a). Yes;

11(c). 4;