Applied Combinatorics by Fred S. Roberts and Barry Tesman

Answers to Selected Exercises¹

Chapter 4

Section 4.1.

2. Consider a brother and a sister;

4. Less than;

6(a). It is a complete graph with loops at every vertex;

8(b). Suppose that R^c is not symmetric. Then, for some $a, b \in X$, aR^cb but $\sim bR^ca$. Therefore, R is not symmetric since bRa but $\sim aRb$;

10. The relation $(X, R \cap S)$ is reflexive, symmetric, asymmetric, antisymmetric, and transitive;

16. Consider the binary relation (X, R) and suppose that aRa for some $a \in X$. By asymmetry, it must be the case that $\sim aRa$, which is a contradiction;

19(a). $X = \{a, b, c\}$ and $R = \{(a, c)\};$

20. (a), (d), (e), and (g) are equivalence relations;

25. Reflexive and Symmetric hold;

26(e)i. aSb iff $\sim aRb \& \sim bRa$ iff $a \neq b \& b \neq a$ iff a = b;

27. 2^{n^2} .

Section 4.2.

1(b). Yes.

2(b). Yes.

3(b). No.

4(b). No.

5(b). No.

¹More solutions to come. Comments/Corrections would be appreciated and should be sent to: Barry Tesman (tesman@dickinson.edu) or Fred Roberts (froberts@dimacs.rutgers.edu).

6(b). No. 7(b). No. 8(b). No. 9(b). No. 10(b). No. **13(c)**. $K = \{(1,3), (2,3), (3,4)\}.$ **19(a)**. $L_{S^{-1}} = [x_n, x_{n-1}, \dots, x_1].$ **19(b)**. $L_S \cap L_{S^{-1}} = \emptyset$. **21**. Transitive and complete, but not asymmetric: $X = \{a\}$ and $R = \{(a, a)\}$.

Transitive and asymmetric, but not complete: $X = \{a, b, c\}$ and $R = \{(a, b), (a, c)\}$. Complete and asymmetric, but not transitive: $X = \{a, b, c\}$ and $R = \{(a, b), (b, c), (c, a)\}.$

25(a). Yes.

30(a). No.

33(a). w_1 and m_2 are both better off by leaving their assigned partners and marrying each other.

Section 4.3.

1. No.

4(a). 3.

4(e). 4.

5(c). 2.

9(a). $[\hat{1}, x, y, d, z, a, b, c, \hat{0}].$

12. Strict partial order (c) of Figure 4.23 has dimension 2.

17. [a, x], [b, y], [c, z], [d, w].

18. $\{u\}, \{y, w\}, \{z, v\}, \{x\}.$

Section 4.4.

1(a). No for both strict partial orders

1(b). No for both strict partial orders

2(b). (a): $\hat{0}$; (b): d; (c): $\hat{0}$.

3(a). (a): Not a lattice; (b): Not a lattice.

Answers to Selected Exercises

11.	a	b	c	$a \wedge (b \vee c)$	$(a \wedge b) \vee (a \wedge c)$
	0	0	0	0	0
	0	0	1	0	0
	0	1	0	0	0
	1	0	0	0	0
	0	1	1	0	0
	1	0	1	1	1
	1	1	0	1	1
	1	1	1	1	1

12. (a): No.

F	Т	F	Т
			1
Т	F	F	Т
F	Т	Т	F
Т	F	F	Т
	T F T	$egin{array}{ccc} T & F \ F & T \ T & F \end{array}$	$egin{array}{c c} T & F & F \ F & T & T \ T & F & F \ \end{array}$

17(b). p = Pete loves Christine; q = Christine loves Pete; $p \land q$ = Pete and Christine love each other. $\frac{p}{E} \left| \begin{array}{c} q \\ p \\ \end{array} \right| \left| \begin{array}{c} p \land q \\ \end{array} \right|$

q	$p \wedge q$
F	F
T	F
F	F
T	T
	F

20(a) .					$(x_1' \land x_2) \lor (x_1 \lor x_2)$
_	1	1	0	1	1
	1	0	0	1	1
	0	1	1	1	1
	0	0	0 0 1 0	0	0