Applied Combinatorics
 by Fred S. Roberts and Barry Tesman

Answers to Selected Exercises ${ }^{1}$

Chapter 4

Section 4.1.

2. Consider a brother and a sister;
3. Less than;
$\mathbf{6 (a)}$. It is a complete graph with loops at every vertex;
$\mathbf{8 (b)}$. Suppose that R^{c} is not symmetric. Then, for some $a, b \in X, a R^{c} b$ but $\sim b R^{c} a$. Therefore, R is not symmetric since $b R a$ but $\sim a R b ;$
4. The relation $(X, R \cap S)$ is reflexive, symmetric, asymmetric, antisymmetric, and transitive;
5. Consider the binary relation (X, R) and suppose that $a R a$ for some $a \in X$. By asymmetry, it must be the case that $\sim a R a$, which is a contradiction;

19(a). $X=\{a, b, c\}$ and $R=\{(a, c)\} ;$
20. (a), (d), (e), and (g) are equivalence relations;
25. Reflexive and Symmetric hold;

26(e)i. $a S b$ iff $\sim a R b \& \sim b R a$ iff $a \ngtr b \& b \ngtr a$ iff $a=b$;
27. $2^{n^{2}}$.

Section 4.2.
1(b). Yes.
2(b). Yes.
3(b). No.
4(b). No.
5(b). No.

[^0]6(b). No.
7(b). No.
8(b). No.
9(b). No.
10(b). No.
13(c). $K=\{(1,3),(2,3),(3,4)\}$.
19(a). $L_{S^{-1}}=\left[x_{n}, x_{n-1}, \ldots, x_{1}\right]$.
19(b). $L_{S} \cap L_{S^{-1}}=\emptyset$.
21. Transitive and complete, but not asymmetric: $X=\{a\}$ and $R=\{(a, a)\}$.

Transitive and asymmetric, but not complete: $X=\{a, b, c\}$ and $R=\{(a, b),(a, c)\}$. Complete and asymmetric, but not transitive: $X=\{a, b, c\}$ and $R=\{(a, b),(b, c),(c, a)\}$.

25(a). Yes.
30(a). No.
33(a). w_{1} and m_{2} are both better off by leaving their assigned partners and marrying each other.

Section 4.3.

1. No.

4(a). 3 .
4(e). 4 .
5(c). 2 .
9(a). [$\hat{1}, x, y, d, z, a, b, c, \hat{0}]$.
12. Strict partial order (c) of Figure 4.23 has dimension 2.
17. $[a, x],[b, y],[c, z],[d, w]$.
18. $\{u\},\{y, w\},\{z, v\},\{x\}$.

Section 4.4.

$\mathbf{1 (a)}$. No for both strict partial orders
1(b). No for both strict partial orders
2(b). (a): $\hat{0} ;(\mathrm{b}): d ;(\mathrm{c}): \hat{0}$.
3(a). (a): Not a lattice; (b): Not a lattice.
11.

a	b	c	$a \wedge(b \vee c)$	$(a \wedge b) \vee(a \wedge c)$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
1	0	0	0	0
0	1	1	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

12. (a): No.

16(c).

p	q	q^{\prime}	$p \wedge q^{\prime}$	$\left(p \wedge q^{\prime}\right) \rightarrow q$
F	F	T	F	T
F	T	F	F	T
T	F	T	T	F
T	T	F	F	T

17(b). $p=$ Pete loves Christine; $q=$ Christine loves Pete; $p \wedge q=$ Pete and Christine love each other.

p	q	$p \wedge q$
F	F	F
F	T	F
T	F	F
T	T	T

18(b). Equivalent.

20(a). | x_{1} | x_{2} | $x_{1}^{\prime} \wedge x_{2}$ | $x_{1} \vee x_{2}$ | $\left(x_{1}^{\prime} \wedge x_{2}\right) \vee\left(x_{1} \vee x_{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 |

[^0]: ${ }^{1}$ More solutions to come. Comments/Corrections would be appreciated and should be sent to: Barry Tesman (tesman@dickinson.edu) or Fred Roberts (froberts@dimacs.rutgers.edu).

