Applied Combinatorics

by Fred S. Roberts and Barry Tesman

Answers to Selected Exercises ${ }^{1}$

Chapter 9

Section 9.1.
1.

1	4	3	2
1	4	3	2
1	4	3	2
1	4	3	2

2(b). it must be a multiple of 6 ;
6(a). 21.

Section 9.2.

1(a). no;
3(a). no;
4(a). yes;
$5(a)$. cannot be sure;
$\boldsymbol{5}(\mathbf{c})$. cannot be sure;
8. yes;
9. no;

11(a). no;
$\mathbf{1 1 (b)}$. it is at most 7 .

17. $A^{(1)}=$| 3 | 1 | 2 |
| :--- | :--- | :--- |
| 1 | 2 | 3 |
| 2 | 3 | 1 | , $A^{(2)}=$| 2 | 3 | 1 |
| :---: | :---: | :---: |
| 1 | 2 | 3 |
| 3 | 1 | 2 |$;$
[^0]19. $\left[\begin{array}{llll}1 & 1 & 1 & 4 \\ 1 & 2 & 2 & 1 \\ 1 & 3 & 3 & 2 \\ 1 & 4 & 4 & 3 \\ 2 & 1 & 2 & 3 \\ 2 & 2 & 1 & 2 \\ 2 & 3 & 4 & 1 \\ 2 & 4 & 3 & 4 \\ 3 & 1 & 3 & 1 \\ 3 & 2 & 4 & 4 \\ 3 & 3 & 1 & 3 \\ 3 & 4 & 2 & 2 \\ 4 & 1 & 4 & 2 \\ 4 & 2 & 3 & 3 \\ 4 & 3 & 2 & 4 \\ 4 & 4 & 1 & 1\end{array}\right] ;$

22(a). yes;
22(b). no;
22(c). yes.

Section 9.3.

1(a). 2;
2(b). $a+b=9, a \times b=8 ;$
5(c). no;
7(b). 258;

10(a).

+	0	1	2	3	4	\times	0	1	2	3	4
0	0	1	2	3	4	0	0	0	0	0	0
1	1	2	3	4	0	1	0	1	2	3	4
2	2	3	4	0	1	2	0	2	4	1	3
3	3	4	0	1	2	3	0	3	1	4	2
4	4	0	1	2	3	4	0	4	3	2	1

11(b). 2;
13(a). 3; 7;
15(a). no.

Section 9.4.

1(a). not a BIBD;
2(a). $b=50, r=25$;

3(a). $r(k-1) \neq \lambda(v-1)$;
7. no: $b \geq v$ fails;

$\mathbf{1 0 (a)} \cdot\left[\begin{array}{llll}3 & 2 & 2 & 2 \\ 2 & 3 & 2 & 2 \\ 2 & 2 & 3 & 2 \\ 2 & 2 & 2 & 3\end{array}\right] ;$
18. 737 ;
21. $b=26, v=13, r=20, k=10, \lambda=15$;
$\mathbf{2 6 (a)}$. this is a $(4 m-1,2 m-1, m-1)$-design, $m=2^{3}$;
$\mathbf{3 5}(\mathbf{a})$. no: $k-\lambda$ is not a square;
41. take two copies of each block of a $(31,15,7)$-design.

Section 9.5.

1(d). (P3);
$\mathbf{2 (a)}$. There are 9 distinct points, no 3 of which lie on the same line;
4. 21 ;

8(a). no;
$\mathbf{9 (a)} \cdot v=31, k=6, \lambda=1$;
10(a). yes (Corollary 9.27.1);
14(a). yes (but cannot be sure);
16(a). 1;
17(a). 1;
22(b). if we take
$U_{3}=\{1,3,5,7\}, V_{2}=\{2,3,4,13\}, W_{11}=\{3,6,8,11\}, W_{21}=\{3,9,10,12\}$, then the point 3 is associated with $(3,2)$ and $(3,2,1,1)$;

22(c). $a_{32}^{(1)}=1, a_{32}^{(2)}=1 ;$
$\mathbf{2 3 (a)}$. $(2,3)$ is associated with $(2,3,1,2)$;
23(b). $W_{12}=\{(1,2),(2,1),(3,3)\} ;$
$\mathbf{2 3 (e)} . W_{12}$ is now $\left\{(1,2),(2,1),(3,3), w_{1}\right\}$, the finite points are all (i, j) with $1 \leq i, j \leq 3$, and the infinite points are u, v, w_{1}, w_{2};

23(f). $m^{2}+m+1$ lines, including the line at infinity.

[^0]: ${ }^{1}$ More solutions to come. Comments/Corrections would be appreciated and should be sent to: Barry Tesman (tesman@dickinson.edu) or Fred Roberts (froberts@dimacs.rutgers.edu).

