Applied Combinatorics by Fred S. Roberts and Barry Tesman

Answers to Selected Exercises¹

Chapter 9

Section 9.1.

2(b). it must be a multiple of 6;6(a). 21.

Section 9.2.

1(a). no;

3(a). no;

4(a). yes;

5(a). cannot be sure;

5(c). cannot be sure;

8. yes;

9. no;

11(a). no;

11(b). it is at most 7.

	3	1	2		2	3	1
17 . $A^{(1)} =$	1	2	3	$, A^{(2)} =$	1	2	3;
	2	3	1		3	1	2

¹More solutions to come. Comments/Corrections would be appreciated and should be sent to: Barry Tesman (tesman@dickinson.edu) or Fred Roberts (froberts@dimacs.rutgers.edu).

Section 9.3.

1(a). 2;

2(b). $a + b = 9, a \times b = 8;$

5(c). no;

7(b). 258;

	+	0	1	2	3	4	×	0	1	2	3	4
10(a).	0	0	1	2	3	4	0	0	0	0	0	0
	1	1	2	3	4	0	1	0	1	2	3	4
	2	2	3	4	0	1	2	0	2	4	1	3
	3	3	4	0	1	2	3	0	3	1	4	2
	4	4	0	1	2	3	4	0	4	3	2	1

11(b). 2;

13(a). 3; 7;

15(a). no.

Section 9.4.

1(a). not a BIBD;

2(a). b = 50, r = 25;

3(a). $r(k-1) \neq \lambda(v-1);$

7. no: $b \ge v$ fails;

$$\begin{cases} 1,2 \} & \{1,3 \} & \{2,4 \} & \{1,2,3 \} & \{2,3,4 \} \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ \end{cases};$$

$$\mathbf{10(a)}. \begin{bmatrix} 3 & 2 & 2 & 2 \\ 2 & 3 & 2 & 2 \\ 2 & 2 & 3 & 2 \\ 2 & 2 & 2 & 3 \end{bmatrix};$$

18. 737;

21. $b = 26, v = 13, r = 20, k = 10, \lambda = 15;$

26(a). this is a (4m - 1, 2m - 1, m - 1)-design, $m = 2^3$;

35(a). no: $k - \lambda$ is not a square;

41. take two copies of each block of a (31, 15, 7)-design.

Section 9.5.

1(d). (P3);

2(a). There are 9 distinct points, no 3 of which lie on the same line;

4. 21;

8(a). no;

9(a). $v = 31, k = 6, \lambda = 1;$

10(a). yes (Corollary 9.27.1);

14(a). yes (but cannot be sure);

16(a). 1;

17(a). 1;

22(b). if we take $U_3 = \{1, 3, 5, 7\}, V_2 = \{2, 3, 4, 13\}, W_{11} = \{3, 6, 8, 11\}, W_{21} = \{3, 9, 10, 12\}$, then the point 3 is associated with (3, 2) and (3, 2, 1, 1);

22(c). $a_{32}^{(1)} = 1, a_{32}^{(2)} = 1;$

23(a). (2, 3) is associated with (2, 3, 1, 2);

23(b).
$$W_{12} = \{(1,2), (2,1), (3,3)\};$$

Answers to Selected Exercises

23(e). W_{12} is now $\{(1,2), (2,1), (3,3), w_1\}$, the finite points are all (i,j) with $1 \le i, j \le 3$, and the infinite points are u, v, w_1, w_2 ;

23(f). $m^2 + m + 1$ lines, including the line at infinity.