 Explanatory Comments on the slides used for the DIMACS seminar given by S. Ji on 4/17/2006, entitled

The Simpson-Elasser-Wolfram Framework for Modeling the Living Cell,
available at

http://dimacs.rutgers.edu/SpecialYears/2002_Epid/seminars05-06.html.

	Slide 
	Topic
	Key Points

	1
	Seminar title
	Light micrograph of Trichonympha which has hundreds of flagella.  One of the simplest unicellular organisms.  It has no mitochondria and generate ATP via glycolysis.  It moves around by the waving actions of flagella driven by ATP hydrolysis.  If biologists succeed in modeling this organism, it may be comparable to Bohr’s modeling of the hydrogen atom in the early decades of the 20th century.

	2
	Organization of the seminar
	i)  What cells look like,  ii) the Simpson-Elsasser-Wolfram (SEW) framework, iii) description of the Bhopalator model of the cell based on two main concepts – dissipative structures of Prigogine, and conformons, iv) application of the cell model to the interpretation of the DNA microarray data of  budding yeast, and v) conclusion: to connect structure to function in biology, it is necessary to introduce the concepts of conformons and dissipative structures. 

	3
	Cells
	Surface appearance of the budding yeast Saccharomyces cerevisiae

	4
	Cells
	Cell’s ability to adjust its behavior in response to its environment

	5
	Cells
	Two of the simplest unicellular organisms.

i) Transmission electron micrograph of Giardia intestinalis, and ii) the light micrograph of Trichonympha. 

	6
	Cells
	Cells are filled with cytoskeletal structures that maintain their shapes and cause their movement.

	7
	Three scientists
	The three scientists whose ideas may guide the future direction of cell modeling.

	8
	G. Simpson
	To model the cell, it may be necessary to import and utilize all principles, laws and concepts developed in all areas of human knowledge.  He expressed this idea on p. 107 in [1] (see References at the end).  

	9
	S. Wolfram
	Any complex phenomena in nature can be modeled using simple computer programs based on cellular automata repeatedly applied n times, where can be 103 to 106. In other words, underlying all complex phenomena (including the living cell), there may be surprisingly simple sets of rules.  Many examples are given in his book [2] to support this claim.  

	10
	G. Simpson
	Redundant slide

	11
	All principles,

laws, and concepts
	There are about 26 different principles, laws and concepts that were incorporated into the Bhopalator model of the cell by 1997 [3].  Since then at least 6 more additional laws and concepts have been incorporated into the cell model.  
For the reference to general relativity, see H. A. Smith and G. R. Welch [4].  
For linguistic and semiotic principles, see [5]. 
The most recent idea to be added is that of “coincidence detector”, namely, that enzymes can be viewed as molecular devises which receive two inputs (Brownian motions and chemical substrates) within narrow time gaps (i.e., more or less simultaneously) in order to produce ordered motions, including catalysis and vectorial movements.  The conformon model of enzymic catalysis proposed in 1974 [6] embodies these features of coincidence detectors (see Slide #20 below). 
The concept of coincidence detectors are widely used to account for neuronal behaviors [7].  

	12
	DNA supercoils
	Functional (as compared to non-functional) DNA molecules carry not only genetic information but also mechanical energy in the form of supercoils.  The mechanical energy stored in supercoiled DNA is known to be essential for transcriptional activities in E. coli [8].  

	13
	Conformons
	DNA supercoils provide concrete examples of the conformons defined in 1972-1974 as conformational energy stored in sequence-specific sites within biopolymers.  For a recent review on the experimental and theoretical evidence for conformons, see [9].  

	14
	Dissipative 
structures
	The flame of a candle is a prototypical example of dissipative structure. 

Prigogine divides all structures in nature into equilibrium and dissipative structures.   Equilibrium structures can exist without dissipating free energy but dissipative structures cannot [10, 11].

	15
	Dissipative structures
	Various gradients constituting the flame of a candle

	16
	Dissipative structures
	The Belousov-Zhabotinsky reaction [11]

	17
	Intracellular dissipative structures
	Visualization of the calcium ion gradient in a migrating human neutrophile [12].  This is one of the first examples of intracellular dissipative structures linked to cell functions. 

	18
	Dissipative structures
	The action potential is another example of dissipative structures with well-defined biological function, in this case, the transmission of information along the axon. 

	19
	Coincidence detector
	Although this equation by Mikula and Niebur  [7] was derived based on the neuron as a model of a coincidence detector, I believe that it can be applied to enzymes (see Slide #20) and  protein complexes.  It can also be extended to assemblies of neurons in the brain as evidenced by many papers that have been published along this line (google “neuronal synchrony”). 

	20
	Enzymes as coincidence detectors
	This figure shows the active site of an enzyme converting substrate S to product P within the enzyme-substrate complex.  Notice that the substrate is bound through catalytic residues 1, 2 and 3 (see a), while the product is bound through catalytic resides 2, 3 and 4 (see d), dictated by  their different molecular shapes.  Because the conformational changes necessary to rearrange catalytic residues at the active site when S is converted into P would be much slower than the electronic transitions accompanying the S to P conversion, it was postulated in 1974 [6] that the conformation of the active site must first change to an intermediate state between the initial and final states of the enzyme, characterized by the presence of catalytic resides 1, 2, 3 and 4 (see b and c), before S can be converted to P at the transition state.  At the transition state  S and P lose their molecular identity and can exist either as S or P.   The transition state can either return to the initial state reproducing S or go over to the final state, leading to the production of P.  The proposed mechanism of enzymic catalysis was motivated by the Franck-Condon principle in chemical kinetics and was generalized in 1991 into what is known as the “generalized Franck-Condon Principle” or “the principle of slow and fast processes” [13], which states that 
“Whenever an observable process, P, results from the coupling of two partial processes, one slow (S) and the other fast (F), with F proceeding faster than S by a factor of at least 102, then S must precede F.” 
The molecular mechanism of enzymic catalysis based on this principle can also be described in terms of the concept of a coincidence detector, defined as 
“a computational unit that fires if the number of input spikes received within a given time bin, Δt, equals or exceeds the threshold, Θ.” [7].  
The concept of a coincidence detector applied to an enzyme can be represented as follows: 
Brownian Motions 

 (Random motions)          ____________             

                                        |                        |              Ordered    
                                        |  Coincidence  |              Motions
                                        |   Detector       |              (Catalysis)
Chemical Reactions      |____________|              
(Free energy source)  

Here Brownian motions including the side chain rearrangements of the catalytic residues are considered to be  much slower than the electronic transitions involved in chemical bond breaking or formation.  Only when right Brownian motions of the catalytic residues coincide with the presence of the right chemicals at the active site of an enzyme would there result catalysis, a form of ordered motions of enzymes as a whole.   

In another sense, enzymes can be viewed as selectors of Brownian motions driven by chemical reactions that they catalyze coincidentally, the selecting actions involving choosing a small subset of the conformers of the catalytic residues that are accessible through thermal fluctuations of an enzyme or  Brownian motions.



	21
	Ion pumps as coincidence detectors
	Brownian Motions 

 (Random motions           ____________             

  of Ca++ and ATP)          |                        |             Ordered    

                                        | Calcium Ion   |              Motions

                                        |      Pump        |              (e.g., Active

Chemical Reactions      |____________|              Transport

(ATP electronic                                                      of Ca++)
  Transitions)
Here, we can identify the Brownian motions with the Ca++ ions and ATP molecules moving in and out of their respective binding sites within the Ca++ ATPase. The calcium ion pump, being a coincidence detector, is postulated to execute an orderly movement of the calcium binding sites if and only if the slow Brownian motions have created the right configurations of both Ca++ ion and ATP molecules at their binding sites catalyzing the ATP hydrolysis reaction.
In effect the model postulates the synchronization of the fast ATP electronic changes and slow Ca++ ion positional changes within the ion channel that occur within two binding sites separated by at least 20-30 Å.  To avoid the action-at-a-distance problem that plagued Newtonian mechanics, we here postulate that these two events are coupled through the transfer of conformons (see the wiggly arrows connecting the ATP binding sites and the Ca++ ion channel).  Conformons can drive any directional motions (including Ca++ pumping) because they carry both free energy (in the form of conformational strains) and genetic information (associated with the local amino-acid sequences entrapping conformational strains).  


	22
	Temporal hierarchy
	  There may be two distinct kinds of hierarchies in nature: spatial and temporal.  The nodes of spatial hierarchies may be primarily associated with equilibrium structures, whereas those of temporal hierarchies with dissipative structures of Prigogine [10, 11].  
  We can represent a temporal hierarchy as in this figure, where the “leaves” (i.e., lowest elements 16 through 31) are inputs to a system (to be defined below) observed at a given time slice, and the root of the hierarchy  (i.e., element 1) is the system output at that time point.  We assume that the root and the leaves are connected through a system of coincidence detectors, each receiving two inputs (e.g., 8 and 9 at a given time point) within a short time gap, Δt, and produce one output (e.g., 4 at the same time point) when the combined strength of the two inputs equals or exceeds a threshold value, Θ.   Then, if the number of input trains carrying the leaves is m, the number of coincident input trains is j, and the probability of the input signal being in one time bin is p, we can use the Mikula-Niebur equation to calculate the probability P of observing out put 1 at a time point as follows:

       P = mCj pj(1-p)m-j                                          (1)
where mCj is the binary coefficient given by m!/j!(m-j)! [7].

Each node in the temporal hierarchy represents an event, higher its position in the hierarchy, less probable is its occurrence or a rarer event it is.  The probability of output P is a nonlinear function of three variables, m, j, and p, assuming that the correlation coefficients among the input signal trains are zero [7].  Therefore there may be an optimal set of variables for maximizing the P value.   If the Mikula-Niebur equation, (1), can be applied to multiprotein complexes with r subunits divided into two groups, one group consisting of s coincidence detectors with very short Δt and the other of  l (lower case L) coincidence detectors with very long Δt, so that r = s + l, then it may turn out that s detectors will affect P through p and l detectors will affect P through C in Eq. (1).  
Eq. (1) may provide one possible rationale for the existence of multiprotein complexes—the multiplicity of the components in a multiprotein complex enhances the probability of the rare event (i.e., node 1 in Figure 1) outputted by a system of coincidence detectors (represented by all the nodes having three degrees of connection) by either increasing C or optimizing p in Eq. (1).          

	23
	Photograph of Elsasser
	It is probably accurate to say that Elsasser dedicated the last three decades or so of his life mainly to defining the basic difference between physics and biology.  He maintains that the class of the objects studied in physics is homogeneous (i.e., few in kinds) and infinite in size (in the order of Avogadro’s number, 1023) whereas that studied in biology is heterogeneous in kinds (the number of different kinds being in the order of 1010^9, the number of all possible strings constructed out of 4 different kinds of deoxyribonucleotides, about one billion units long, as found in the human genome) and finite in size (ranging from 1 to 106 ?).  According to Elsasser, the traditional mathematical equations so useful in physics and chemistry cannot be applied to biology because they do not converge when applied to finite classes [14]. 
To distinguish between homogeneous and heterogeneous classes, I found it useful to represent a class, C, as follows:

   C = (m, n,)                                                        (2)

where m is the number of different kinds of the members of a class, and n is the number of copies of each kind.  The two variables can have two ranges of values--large and small.  When m is small we can refer to the class as homogeneous; when large, heterogeneous.  Likewise, when n is large, the class can be referred to as infinite; when small, finite:

                     ___\  m << n => Homogeneous Class  = Physics

                    |

C = (m, n)-- |
                     |___  m >> n  => Heterogeneous Class = Biology
                           /
                                                                              (3)

One important conclusion that Elsasser arrived at, based on the recognition of these two classes of objects, is that reductionist scheme works for homogeneous classes but not for heterogeneous classes.  For the latter the principle of holism applies.  This conclusion when applied to the cell, a prototypical example of objects belonging to the heterogeneous class, is that the property or phenomenon we call life belongs to the class as a whole and not necessarily to any members of the class, the same  conclusion that Bohr arrived at based on the analogy between the cell and the atom [15].
 The following are some of the quotes from Elsasser’s book that illuminate his basic ideas:

  “ There as been in the past a tendency to apply the successful methods of physical science more or less blindly to the description of organism; reductionist  reasoning being one of the results of this tendency.  Here, we shall try to deal with the difference between living and dead material in terms of a closer analysis that consists, as already indicated, in suitable generalizations of the logical concept of classes. This gets one away from the exclusive use of purely quantitative criteria, which use is a remnant of the uncritical transfer of the methods of physical sciences to biology.  Instead of this we shall find a more subtle use of the class concept.” (pp.22-23 in [14]).
“The basic assumption to be made in our interpretation of holism is that an organism is a source (or sometimes a sink) of causal chains which cannot be traced beyond a terminal point because they are lost in the unfathomable complexity of the organism.” (p.37 in [14]).
“Drawing on the idea of generalized complementarity interpreted here as mechanistic vs. holistic properties, we have strongly emphasized the holistic aspects to arrive at our three postulates. . . . “  (p.148 in [14]).

Although Elsasser was defending holism against reductionism throughout most of his book, he seemed to soften his attitude toward reductionism in the last chapter of his book as quoted above.  I personally believe that we need both reductionistic and holistic approaches to account for life on all levels of empirical observations, which would well accord with the thesis of Simpson that biology is the study of phenomena to which all principles apply [1].  

In agreement with Elsasser’s holism, I too came to the conclusion in the late 1989 (see pp. 110-113 in [13]) that, to account for life on the cellular level, it was necessary to invoke a new kind of force acting within the cell (and hence called the cell force) just as physicists were forced to invoke the strong force to account for the stability of atomic nuclei against electrostatic repulsion among the nucleons.   

	24
	Cell-atom comparison 
	The cell diameter is about 105 times that of the hydrogen atom.  Hence the cell volume/mass is about 1015 times that of the atomic volume/mass.  The atoms have three different kinds of particles, electrons, neutrons and protons.  In contrast the cell has at least 4 superfamilies (i.e., DNA, RNA, proteins, biochemicals) of particles, each superfamily in turn containing up to 105 families), each family containing up 1 to 106 copies.  The combinatoric numbers of possible configurations of these particles inside the cell is at least 1010^10, i.e, 10 raised to the power of 10 which is in turn raised to the power of 10.  Thus it is clear that atoms belong to homogeneous class and cells to heterogeneous class. 

	25
	Granularity
	The number in the third column refers to the estimated number of particles or objects (i.e., n in Eq. (2))contained in a typical cell.  It does not indicate the number of possible states or configurations of these  particles (i.e., m in Eq. (2)).  In the granularity levels up to III, the traditional continuous mathematics may be applicable but at higher levels V, VI and VII, discrete mathematical approaches (including combinatorics, graph theory, information theory, algorithmics) are deemed essential in agreement with Wolfram’s assertion that all complex phenomena can be modeled using universal cellular automata (pp. 643-644 in [2]).  

	26
	Photograph of Wolfram
	Based on his massive number of computer experiments often involving millions of iterations of a set of simple rules applied to simple initial conditions, he concluded that complex structures can arise from simple programs. Besides, he was able to simulate complex structures and phenomena such as shapes of shells and trees and  turbulence using simple rules governing the behavior of cellular automata, from which he concluded that all complex structures and phenomena in nature may originate from recursive operations of simple sets of rules.

	27
	Simulation of shell shapes
	The similarity between the computer-generated shell shapes and the real ones is striking.

	28
	The Bhopalator
	The origin of the name, Bhopalator, given to the first molecular model of the living cell formulated in 1983.  To the original model of the cell, a set of new concepts and theories have been added since 1983, including the cell language theory (see [16, 17] and pp. 16-18 in [5]) and the concept of coincidence detector [7].

	29
	The Bhopalator model of the living cell
	Reproduced from the original model first proposed in Bhopal, India in 1983 and published in 1985.  The solid arrows indicate the direction of flows of information driven by dissipation of free energy, and the dotted arrows indicate feedback interactions.  The most important new feature is that the final form of gene expression is not proteins as is widely assumed but dissipative structures as defined by Prigogine [10, 11].  Furthermore, it is these dissipative structures which are postulated to be responsible for cell functions.  So the principles embodied in the Bhopalator can be diagrammatically represented as follows:
Structures + Energy ----> Dissipative Structures/Functions

	30 
	A simplified representation of the Bhopalator
	Gradients of all kinds present inside the cell are examples of intracellular dissipative structures.  Gradients not only serve as the immediate drivers of the cell functions and but also as sensors of environmental inputs.  In other words, intracellular gradients can be identified as the input and output devices of the living cell.

	31
	DNA Microarrays
	Self-explanatory.

	32
	How DNA Microarray Experiments are Done
	Self-explanatory.

	33
	mRNA Cluster Analysis 
	The mRNA clusters identified by microarray experiments can be viewed as intracellular dissipative structures that reflect the functional states of the cell under specific experimental conditions.  These clusters result from the dynamic balance between transcription and transcript degradation and hence cannot be directly equated with sets of genes as is the common practice in the field right now.

	34
	Relation between transcript levels (TL) and transcription rates (TR) measured from budding yeast undergoing glucose-galactose shift.
	Each panel displays six pairs of TL and TR values measured at 6 time points as indicated.   If TL is determined by TR alone (as is now widely assumed), the TR vs. TL plots should give linear plots from time points 1 to 6.  However the plots are linear only a part of the time, indicating that there are processes other than transcription that affect TL, which is found to be the transcript degradation process.

	35
	Plots of transcript levels,  transcription rates, and degradation/transcription ratios as functions of time.
	These plots unambiguously demonstrate that mRNA levels in cells are determined not by transcription alone but by a combination of both transcription and transcript degradation process (i.e., by the degradation/transcription ratios).   Each trace is an average of 15-16 genes.  (a) The average glycolytic mRNA level  decreases while that of respiratory mRNA level increases between 5 and 360 minutes after glucose-galactose shift.  (b) The average transcription rates of glycolytic and respiratory genes are not significantly different between 5 and 360 minutes.  (c) Between 5 and 360 minutes, the average degradation/transcription ratios are less than 1 for respiratory genes and greater than 1 for glycolytic genes, thus accounting for the increase in the average respiratory mRNA level and the decrease in the average glycolytic mRNA level shown in (a).    

	36
	Glycolytic vs. respiratory pathways
	Depending on the nutritional environment, budding yeast activates different portions of the carbohydrate metabolic pathway, presumably to  optimize energy metabolism.  When glucose is present, yeast expresses predominantly those genes coding for the enzymes required to convert glucose to ethanol (see the thick arrows on right panel).  Conversely, when glucose runs out and ethanol is the only carbon source, then yeast suppresses the glycolytic genes and activate those genes coding for the enzymes needed to convert ethanol to carbon dioxide and water via the Krebs cycle and electron transport chain (see the thick arrows on the left panel).  These functional shifts are associated with corresponding shifts in the shape of the mRNA trajectories as shown in a of Slide 35, supporting the hypothesis that mRNA levels reflect the functional states of the cell and further that intracellular dissipative structures, of which the mRNA levels are the prototypical examples, determine cell functions, as postulated by the Bhopalator model of the cell.

	37
	mRNA processor as a Coincidence Detector
	The system of enzymes (i.e., transcriptosome and degradasome) that controls the mRNA levels inside the cell and hence cell functions to a large extent is here referred to as the “mRNA processor”.  It is convenient to view the mRNA processor as a coincidence detector having as its  two inputs  the synthesis and the degradation of mRNA molecules and as its output the intracellular mRNA levels, which, as dissipative structures, determine cell functions.

	38
	An analogy between atomic physics and cell biology
	The most significant contribution that DNA microarray technology has made to cell biology is that it has provided at least one experimental window through which biologists can observe the actions of genes and their products simultaneously on the genome-wide level.  In this sense, DNA microarray technology may be akin to the atomic emission/ absorption spectroscopy which allowed physicists to study the internal structure of the whole atoms beginning in the 19th century.   Just as atomic spectroscopy allows physicists to measure only the electronic motions inside the cell from which nuclear motions are indirectly inferred, so DNA microarray techniques allow biologists to measure only mRNA levels, from which actions of other components of the cell (e.g., genes, proteins, biochemicals) can be indirectly inferred.  There are other possible analogies as explained in the table. 
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