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Abstract 

 
 A new SVM wrapper method, which simultaneously maximizes margin and 
minimizes feature space is introduced. For these purposes we modify the standard 
criterion by adding to the basic objective function a third term, which directly penalizes a 
chosen set of variables. The new criterion divided the set of all variables into three 
subsets: deleted, selected and weighted features. We are showing that the question can be 
formulated as a particular min-max problem for convex-concave functions, which in turn 
can be solved by saddle point polynomial algorithms. We analyzed a set of such 
algorithms and realized one, which is taking to account specificity of our problem. The 
algorithm is examined on a classification Benchmark and its ability to improve the 
recognition results is shown. We also show that the developed method can be easily 
transferred to the Support Vector Regression case. 
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1. Introduction 
 

This work was motivated by feature selection problem in learning classification 
via SVM methods [45]. According SVM approach an optimal hyper-plane is related to 
maximum margin between sets of samples from complementary classes in the training 
data, which is bounded the critical factor of the learning generalization called VC-
dimension (or weak margin if the sets are not separable [1, 2]). From the prospective of 
the feature selection problem it is a very interesting question how to find a subset of 
features which space gives the largest margin between classes on the training data.1 We 
introduce a new type of SVMs – saddle point SVM (SP-SVM) and we are showing that 
the question can be formulated as a particular min-max problem for convex-concave 
functions, which in turn can be solved by saddle point algorithms.2 This specification of 
the problem gives algorithms, which are polynomial. In literature for feature selection 
methods based on optimization of quality criteria called as wrapped methods [23-29]. 
Taking into account that the margin can be considered as a criterion of a classifier quality 
we will call the algorithms "exact wrapped algorithms". It is looking both for a 
coordinate subspace and a set of classifiers with the maximal margin. One can use it in a 
combination with a cross-validation procedure, for instance, to estimate on the same 
testing data two classifiers: constructed in original space (getting by a regular SVM 
method) and based on the considered optimal space. An example of such experiments 
will be done in section 4.  

The paper is organized into 6 sections and 2 Appendices. In the second section we 
describe our basic results: exact wrapped methods of feature selection for classification 
problem by maximizing margin between classes. In the third section we described our 
saddle point algorithm in which we take into account specifics of our problems. In the 
fourth section we describe and analyze the obtained experimental results with this 
algorithm. In the section 5 we show that the developed saddle point approach can be 

                                                 
1 The first paper in which the feature selection problem is integrated with SVM method was [32]. This 
work explores idea that weights of a linear SVM classifier can be interpreted as significance estimates of 
the corresponding variables. As it was demonstrated by experiments the procedure proposed in [32] gives a 
significant reduction of the original space without reducing the classification accuracy. However, it doesn't 
relate directly to the margin maximization task. 
 
 
2 In [31] J. Bi has investigated multi criteria approach to the feature selection problem in the framework of 
the VC-dimension minimization. According to this approach the solution is represented as a Pareto-optimal 
set of classifiers (MOPSVM). Unfortunately, the proposed method doesn't guarantee to achieve the 
solution. Our criterion is different. We follow the standard SVM idea to design a single criterion, which 
maximized margin, but we modify the standard criterion by adding to the basic objective function a new 
term, which directly penalizes a chosen set of variables. One could find below that the new criterion 
divided the set of all variables into three subsets: deleted, selected and weighted features. For a convenient 
comparison of these two methods we give a detail summary of the method proposed by J. Bi in the 
Appendix 4.    
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easily extend on SVM methods for regression modeling.3 Detail analysis of this 
opportunity is our plan on a future research.  

As far as this paper investigates the properties of a new introduced saddle point 
criterion we decided to add a section 6, which shows that the convex-concave theory does 
not transfers automatically to the cases of non-linear kernels. In spite of it the following 
method for non-linear kernels can be used. It is very often for SVM practitioners to map 
every object to the space of vectors of a kernel function between the chosen object and all 
objects in the training data including the considered object itself; and to build a linear 
classifier in the new space. Our SP-SVM method can be also used in this new space, 
which can improve the classification results.  

In the Appendix 1 we present a survey about saddle points algorithms to give 
readers a convenient way to analyze the proposed methods autonomously. This Appendix 
together with section 3 shows that unless proven polynomial properties of the saddle 
point algorithms their implementation is an independent interesting task. In our 
experiments (section 4) we used small cardinality samples. The reason of it was a strong 
dependency of the algorithm’s speed of the cardinality of training set. The first 
improvement we have to do in our future work is to develop new algorithms which speed 
would not be so depended from the training set size. 

Appendix 2 dedicated to MOPSVM feature selection algorithm [31] of Bi. 
We hope that this paper which brings to "SVM methods community" the idea of 

using saddle point algorithms for learning processes will give a new opportunity to 
improve a power of the methods in general. We suppose that SP-SVM will be useful in a 
wider field of data analysis problems as already mentioned regression modeling as well 
as new ones for instance: feature interactions, PCA-like and clustering problems.  
 
 

                                                

 

2. Exact Wrapped Method for Feature Selection in Learning 
Classification 
 

In this section we introduce new criteria to receive a classifier with maximum 
margin by searching subspaces of a given space. The methods to find saddle points 
related to the mentioned optimal classifiers we call as exact wrapped methods. The 
feature selection problem considered under SVM methods is investigated in [30-34]. In 
[32, 33] was proposed an efficient greedy-like procedure, which worked as a standard 
wrapped algorithm [23].  

We introduce a three terms criterion as a modification of SVM setting and define 
a problem as a problem of searching for a set of variables that gives optimum to the 
described criterion. 

This problem became discrete-continuous and thus is very hard to solve. We load 
our problem into a continuous one, which is searching for a transformation of space of 

 
3 A feature selection method for SVM regression from very different point of view proposed in [34]. This 
method exploits the fact that linear SVM with l1 - norm regularization inherently performs feature selection 
as a side effect of minimizing capacity of the SVM model.  
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variables in such a way that feature selection and margin maximization will be done 
together.  

The new problem is also not good for its effective solution because it is not 
convex. We change it to a problem of successive minimization, which has the same 
global optimal solutions. 

The last problem is a problem of non-smoothed convex optimization, which we 
show using the dual form of this problem. Such problem can already been solved with 
polynomial algorithms (see Appendix 1). 

We introduce an additional criterion for our problem such that gives more 
stability to a found solution. This criterion is formulated as a saddle point of a convex-
concave function on a close convex compact. 

In subsection 2.2 we analyze properties of the proposed formalism especially 
investigating the geometry of variables and parameters.  

 
 

2.1. SP-SVM Setting. 
  

Let {xi, yi}, i = 1,2,...,N is a training set of points xi∈RM with labels  
yi∈{-1, 1}. Assign set of variables as Ω, Q⊆Ω is an arbitrary subset of variables. We 
formulate the feature selection problem, where the margin criterion is represented by the 
formula: 
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The term A|Q| with the positive constant A is introduced in order to reduce the 

cardinality of the extreme subspace that we look for. 
It is easy to see that this “discrete-continuous” problem is very hard to be solved. 

That’s why let us extend this problem for its continuous analog: 
To find a vector of scaling factors (scaling factor for each variable), such that 

from one hand maximize margin and from the other hand choose a small set of variables 
(feature selection). Let us formulate it in a following way: 
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 This setting means that every variable l in the desired space multiplied by zl.4 

This problem is non-convex, because of the matrices of their constraints are not 
positive and not negative semidefinite. Then problem (2) seems very hard to solve, but it 
is easy to show that it can be substituted by another easier problem which solution is 
coincident to this one.5  

Let us formulate the new problem: 
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Every subproblem in figure brackets of (3) is convex. To show it introduce the 
following pair of auxiliary problems:  

 

                                                 
4 Term  can be changed with term , but we’ll see below that usage of the first one is more 

convenient for dual formulations. 
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5 Indeed the global solutions of (2) are coincident to the global solutions of (3). 
Proof. Let (w(23), δ(23), z(23)) is a solution of problem (3) with optimal objective value F(23). (w(23), δ(23), z(23)) 
is a feasible solution for (2) then F(22) ≤ F(23). Let (w(22), δ(22), z(22)) is a solution of (2) with objective F(22). 
Fp(z(22)) ≤ F(22) because  (δ(22), z(22)) is a feasible point for a problem in square brackets of (3). F(23) ≤ Fp(z(22)) 
as a solution of (3). We have F(23) ≤ Fp(z(22)) ≤ F(22) ≤ F(23), which proves that F(22) = F(23) and  
(w(23), δ(23), z(23)) is a solution of (2) and (w(22), δ(22), z(22)) is a solution of (3). ♦ 
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Proposition 1.  Solutions of (3) are coincident to solutions of (4). Solutions of (2) 

are square roots of the solutions of (4): *
)4(

*
)5( zz = . 

Proof. The first part of the proposition proved by a transformation 
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of (3) also without last constant term. The second part of the proposition proved by a 
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which is investigated over two convex compact sets: 
 

Z = {z | 0≤zl≤1, l=1,…,M},                                                                                 (7) 
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Consider a saddle point (z*, λ*) of (6): 
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Let us solve a defined problem of simultaneous feature selection and margin 

maximization as problem (9). It may be seen from Appendix 1 that a solution of (9) is 
also a solution of (5). Solution of (9) is a stable solution of (5) in sense of Nash 
equilibrium [42]. It may be interpreted in an intuitive way as a game of two players: one 
of them chooses z from Z, the second one chooses λ from Λ. Their compromise solution 
is (z*, λ*). 

 
 

2.2. Saddle Point Properties. 
  
 In this section we will analyze the properties of the introduced formalization from 
the following points of view: what are the conditions for strict elimination of variable, 
what are the conditions for proven necessarily remaining of a variable, what are the 
conditions for “fuzzy answer” – a variable is only weighted, not eliminated, not 
remained. Moreover we analyze a geometrical meaning of introduced above penalty 
parameter A.  

The introduced saddle point properties described by the following 
 

Theorem 1. 
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and (z{0,1}

*, λ{0,1}
*) is a saddle point of (8) with every 0<zj<1 arbitrary changed to 0 or 

1. The solution of (11) is bounded with 
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1) It is known [6] (see Appendix 1) that a function, which is concave by part of its 

arguments and convex by the complemented part, has a saddle point on a close 
convex set. The function L(z, λ) is concave by λ (multiplication of each 
component of x to a positive value, does not disturbs Gramm property) and linear 
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obtained on the ends of intervals [0,1]: zl=1 for positive coefficients  

 9



∑∑
= =

−
N

j

N

k
kj

l
k

l
jkj Axxyy

1 12
1 λλ , zl=0 for negative coefficients. If there are no zero 

coefficients ∑∑
= =

N

j

N

k
kj xyy

1 12
1

min),( *
)4(

*
)4( λzL

z
=

∑
=

=
N

i
iiiy

1
xλ ∑∑

= =

N

j

N

k
j yy

1 1

−kj
l
k

l
j Ax )λλ

),(max λz
λ

L ≤

N

j

kj
l
k

l
jk xx ** λλ

( in a solution then the statement is proved. 
3) This statement is an accomplishment of reasoning of 2). 
4) The left part of inequality (6) is a consequence of the fact that it is a solution of 

the same problem on a widened set. The right part can be obtained as  
),(max *

}1,0{ λz
λ

L .   
♦ 
 
Theorem 1 says that sometimes the solution of (1) will be obtained as a solution 

of (3), which is polynomial. In general case the algorithm divides the set of variables into 
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1) If nevertheless there will be a small set of such axes then one can make an 
exhaustive search of their combinations and calculate a confidence level (6) for 
each of them. The decision of rejection of a set of axes can be obtained if this set 
gives a long confidence interval.  

2) If, in opposite, this “singular” set is large for exhaustive search then only the 
hypotheses of one-by-one inclusion for every of such axes can be examined.  

3) If an axe l has a large weight zl and a tight confidence interval then it will be 
remained, otherwise it will be rejected [36]. Another variant is to remain these 
continuous coefficients zl, which amount will be small, as is: we have no 
confidence to remove l-th axe and no confidence to remain it. Let us take it with 
its weight zl. This variant stays algorithm as an effective, non-exhaustive one.   
 
Let us discuss a geometrical meaning of parameter A. It can be easily obtained 

that w , and = wl
2. Thus it is obvious that 2A is a 

threshold for measure of weakness of l-th slope of a separated hyperplane: a coordinate 
with a weak slope doesn’t influence the separation process.  

Note that in the case A=0 all the space correct to the axes with wl=0 will be 
chosen. 

A saddle point topic has to be discussed in more deep way. According to the 
definition (3) we can solve only the min max problem, which can have solutions that are 
not saddle points (see Appendix 1). The saddle point was introduced in this work for 
technical purposes: it supports a discrete solution that we need. Nevertheless on the other 
hand it supports the Nash equilibrium, which we hope gives more stable classification 
rules. To explain it consider two independent problems: 
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The first one is interpreted as following: to find the best margin classification 

learning for every combination of variables and after it to choose a combination of 
variables supports the best margin from the bests. 

The second one is interpreted as following: to find the best margin combination of 
variables for every classification learning and after it to choose a classification learning 
supports the best margin from the bests. 

Now we have two independent criteria for the feature selection problem, which 
are suitable to intuition. Saddle point algorithm solves both of them simultaneously and it 
has to be more stable than separate solution of one of them. 
  

 

3. Saddle Point Algorithm 
 
In the previous section we formulated a problem of learning classification, which 

simultaneously maximizes margin and minimizes feature space as a saddle point 
problem. In this section we will describe an algorithm for saddle point search. In order to 
make this new topic in learning field more clearly for reader this section organized so that 
the algorithm is described twice  

- theoretically using the necessary notions from convex analysis; 
- in the form of pseudocode. 
We analyzed several saddle-point search algorithms to solve problem (9). The results 

of our analysis presented in Appendix 1.  
At first, algorithm described in [20] was programmed. Our choice based on the fact 

that in [20] was described computation experience of applying the saddle-point search 
algorithm for problems where function L(z, λ) is linear by variable z and quadratic by λ. 
Computations show poor convergence of points generating by the algorithm. The same 
behavior of the algorithm remains in the case when good approximation to saddle point 
(z*, λ∗) is provided as starting point. 

The second algorithm realized was separate calculation of z-component and λ-
component of saddle point (z*, λ∗) (see subsection A1.1. and formulas (A6), (A7)). We 
also used constructions of subgradient (Definition A3, Appendix 1) and projection 
((A15), Appendix 1). 
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Theorem 5.5 from book [6] says: 
Let I -arbitrary set, fi(x) - convex function for ∀i∈I then { } |)(  sup)( Iixfxf i ∈=  is a 
convex function . 

This theorem can be rewritten in the form:  
Let I -arbitrary set, fi(x) - concave function for ∀i∈I then { } |)(  inf)( Iixfxf i ∈=  is a 
concave function . 

In our case L(z,λ) is linear and hence convex by z for fixed λ. So taking 

 we see that ψ(z) is convex function. 








=≥≥== ∑
=

N

j
jjj NjCyI

1
,...,1,0,0| λλλ

On the other hand L(z,λ) is concave by λ for fixed z. Taking  
{  ,...,1 ,10| MlzI l }=≤≤= z we see that ϕ(λ) is concave function. Any solution of the 

problem: 
 

 ( ){  ,...,1,10|  min Mlzl }=≤≤z
z

ψ                                                    (15) 

gives z-component of saddle point (z*, λ∗). 

Any solution of the problem: 

                      max                                             (16) ( )








=≥=∑
=

N

j
jjj Njy

1
,...,1,0,0| λλϕ λ

λ

gives λ-component of saddle point (z*, λ∗). 

We realized algorithm of non-differentiable convex (concave) optimization for solving 
problems (16) and (15). 

The algorithm uses the following scheme for generating sequence of points 
converging to solution of (16) and (15)6: 

                                                 
6 Each step of iterative procedure consists of two sub steps: step by subgradient and projection to the set of 

constraints. This is the reason for usage of indexes t, 
2
1

+t , t+1 in the definition of the procedure [20]. 
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 ( ),:2
1

t
t

tt
zzz z ψα ∂−=

+
 ,...1,0 , : 2

1
1 =








=

++ t
t

Z
t zz π                                        (17) 

 

 ( ),:2
1

t
t

tt
λλλ λ ϕα ∂+=

+
 ,...1,0 , : 2

1
1 =








=

+

Λ
+ t

tt λλ π                                       (18) 

where t- is a iteration number, ∂ψ(z) is subgradient of function ψ(z) in point zt ,πZ(z) is 
projection of point z∈RM on set Z={ 0 ≤ zl ≤ 1, l=1,…,M }, ∂ϕ(λ) is subgradient of 
function  (-ϕ(λ)) (supergradient) in point λt, πΛ

N

(λ) is projection of point λ∈RN on set 

, αz
t and αλ

t  are step-sizes.  








=≤≤==Λ ∑
=j

jjj NjCy
1

,...,1,0 ,0 λλ

We realized several well-known methods of setting values for the step-sizes. The best 
result gives a method that uses bounds on the optimal value of optimized function [5]. 
Lets describe computation of step-size αz

t . 

If we know value ψ(z*), where z* is solution of (15), then we can set step value to 

 

 ( ) ( )
( ) 2

*

  t

t
z
t

z

zz

ψ

ψψα
∂

−
= .                                                              (19) 

Such choice of step-size gives convergence of sequence (17) to z*, see , for example 
theorem 7.2 from book [5]. 

The value of ψ(z*) is unknown, we just looking for it. As it is shown in paragraphs 5.3 
and 7.2 of [5] a low estimate of ψ(z*) can be used for practical computations. 

 Obviously ψ(z) ≥ ϕ(λ) for all z∈Z, λ∈Λ. Assign ϕrec as maximal record value of ϕ(λ) 
achieved during optimization process to iteration t.   ϕrec is a low estimate of ψ(z*) (ψ(z*) 
≥ ϕrec) and we have step-size formula: 
 

                                        ( )
( ) 2

  t

rect
z
t

z

z

ψ

ϕψα
∂

−
=                                                                    (20) 

In the same way we get formula for value of step-size by λ: 
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                                        ( )
( ) 2

  t

trec

t
λ

λ

ϕ

ϕψα λ

∂

−
= .                                                                  (21) 

To calculate ∂ψ(z) - subgradient7 of ψ(z) in point z we should get λmax  - solution of 
the problem:  

    arg                               (22) ( ) ∑ ∑∑ ∑∑
= = = ==

+







−=

N

j

N

j

N

k

M

l
lkj

M

l

l
k

l
jlkjj zAxxzyyL

1 1 1 11
max λλλλz,

λ

          ∑  
=

=≤≤=
N

j
jjj NjCy

1
,...,1 ,0 ,0 λλ

and calculate derivative of function L(z, λmax) by z. The formula for l-component of 
subgradient ∂ψ(z) will be8: 

 

        ( ) ∑∑
= =

+−=
∂

∂ N

j

N

k
kj

l
k

l
jkj

l

Axxyy
z 1 1

maxmax ,
2
1 λλψ z                                                               (23) 

 
where λmax is a solution of dual SVM problem: 
 

                      
,,...,1 ,0

,,...,1,0

max)ˆˆ(
2
1

1

1 1 11

NjC

Njy

xxyy

j

N

j
jj

N

j

N

k
kj

M

l

l
k

l
jkj

N

j
j

=≤≤

==

→−

∑

∑∑ ∑∑

=

= = ==

λ

λ

λλλ
λ

                                             (24) 

and9 l
l

l z xx =ˆ , l=1,…,M. 
                                                 

7 See Definition A3 in Appendix 1. Using geometrical language subgradient d is opposite to the first n 
components of normal vector (-d, 1) of supporting hyperplane of a set S={(x, y) | y≥ f(x)} in point (x, f(x)) 
(a hyperplane that contains S in one of its closed halfspaces and intersects the closure of S with at least one 
point).  

 

8 Functions ψ(z) and ϕ(λ) are non-differentiable. That’s why 
( )
lz∂

∂ zψ
 and 

( )
jλ

ϕ
∂

∂ λ
 are only the notations 

for the corresponding components of subgradient vectors. 
9 To find λmax we use SVM Light program [39, 40]. We transformed SVM Light to DLL after the 
permission of its author Thorsten Joachims. Input data to SVM Light was preprocessed by multiplying each 
l-column of data matrix with zl.  
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To calculate ∂ϕ(λ) - supergradient of ϕ(λ) in point λ we should get zmin - solution of 
the linear programming problem:  

  arg                    (25) ( ) ∑ ∑∑ ∑∑
= = = ==

+







−=

N

j

N

j

N

k

M

l
lkj

M

l

l
k

l
jlkjj zAxxzyyL

1 1 1 11
min λλλλz,

z

 0 ≤ zl ≤ 1, l=1,…,M. 

and calculate derivative of function L(zmin, λ) by λ. The formula for j-component of 
supergradient ∂ϕ(λ) will be: 

 

             ( )
k

N

k

M

l

l
k

l
jlkj

j

xxzyy λ
λ

ϕ ∑ ∑
= =









−=

∂
∂

1 1

min1λ .                                                            (26) 

To find zmin we calculate coefficients of linear by z function L(z,λ): 
  

 ∑∑
= =

+−=
N

j

N

k
kj

l
k

l
jkjl Axxyyp

1 12
1 λλ                                      (27)  

and calculate  





≥
<

=
.0,0
,0,1min

l

l
l p

p
z                                                                   (28) 

Projection zpr = πZ( ), Z={ 0 ≤ zẑ l ≤ 1, l=1,…,M }, MRz ∈ˆ  calculated by simple 
formula: 

 









>
=≤≤

<
=

.1ˆ,1
,,...,1 ,1ˆ0,

,0ˆ,0

l

ll

l
pr
l

z
Mlzz

z
z                                                         (29) 

  

Projection ( )λλ ˆ
Λ= πpr , , 









=≤≤==Λ ∑
=

N

j
jjj NjCy

1
,...,1,0 ,0 λλ NRλ∈ˆ is given by 

solution of quadratic programming problem: 

( )












=≤≤=− ∑∑
==

N

j
jjj

N

j
jj NjCy

1

2

1
,...,1,0 ,0|ˆmin λλλλ

λ
                                 (30) 
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Now we give a pseudocode description of the algorithm: 

Initialization. 

Choose z0∈Z, λ0∈Λ.  

(Z={0≤zl≤1, l=1,…,M},  Λ ). 








=≤≤== ∑
=

N

j
jjj NjCy

1
,...,1,0 ,0 λλ

Set solution accuracy ε>0 

Set t=0. 

Init record values ψrec = ψ (z0), ϕrec = ϕ(λ0), zrec = z0, λrec = λ0, where ψ, ϕ calculated using formulas 
(13), (14). 

 Stopping test. 

if  ( ) ε
ψ

ϕψ
≤

+
−

rec

recrec

1
 

then z*=zrec, λ* = λrec. Stop. 

Step by z. 

Calculate ∂ψ(zt) using procedure (22), (23) and 
( )

( ) 2
  t

rect
z
t

z

z

ψ

ϕψα
∂

−
=  using (20). 

Calculate ( )tz
t

tt
zzz ψα ∂−=

+
2
1

 (see (17)). 

Project 







=

++ 2
1

1 t

Z
t zz π  using (29). 

Step by λ. 

Calculate ϕ(λt) using procedure (25) - (28) and 
( )

( ) 2
  t

trec

t
λ

λ

ϕ

ϕψα λ

∂

−
=  using (21). 

Calculate ( t
t

tt
λλλ ψα λ∂+=

+
2
1

) (see (18)). 

 16



Project 







=

++ 2
1

1 t

Z
t λλ π  by solving a quadratic programming problem (30). 

Update records 

If ψ (zt+1) < ψrec, then ψ (zt+1) = ψrec, zrec = zt+1. 

If ϕ(λt+1) > ϕrec then ϕrec = ϕ(λt+1), λrec = λt+1. 

t=t+1 

go to Stopping test 

 
Remark 2. Additional stopping criteria can be used in optimization process by z or λ. 
The following theorem 7.3 from [5] gives such criterion:  

Let f(x)-convex function on Rn, Q convex set, Q⊂Rn, x*∈Q then x*-global  
minimum of  f(x) on Q  ⇔   subgradient  ( ) ( )( ) .0,  , *** ≥−∂∈∀ xxxxx fQf  ∂
 
 

4. Experimental Results 
 

4.1. Experimental Framework 
 
The proposed algorithm is still time consuming. It is working rather fast on data 

arrays with ~30 observations (calculation time <1sec), but it takes to it more than hour to 
process real data arrays with more than 1000 observations.  

In order to study the properties of proposed SP-SVM mechanism the following 
experimental framework was realized. Let M is overall number of objects in a Benchmark 
set. 

 
1. Any given matrix was used for generation of submatrices of objects of 

length L, which is taken randomly with uniform distribution from 
interval 15-30. Thus each matrix contained L objects and all N 
variables. Proportion of positive and negative labels was saved as in the 
original big matrix.  

2. Parameter C was chosen according to [41]: taken SVM light, chosen 
default C=(average||x||)-1, extracted support vectors and calculated 
default C only with support vectors. 

3. Parameter A chosen randomly with uniform distribution from a 
predefined interval. The boundaries for A were chosen experimentally 
in such a way that the solutions would be non-trivial (small A~0 remain 
all the variables, large A – delete a lot, may be all the variables). The 
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boundaries were chosen as a function of the hyperplane coefficients w 
for a case A=0. 

4. Saddle point training algorithm found a (z*, λ*) approximation to saddle 
point. 

5. Three resulted sets of variables are stored: 
a. “Deleted” – those, which obtained weight 0 (assigned as not 

important) and were deleted by the Saddle Point algorithm; 
b. “Assigned” – those, which obtained weight 1 (assigned as highly 

important) by the Saddle Point algorithm; 
c. “Weighted” – those, which obtained weight 0 ≤ A ≤ 1 (see section 2.2). 

6. All objects the complementary (M-L) objects were used as examined 
objects. 

7. 3 recognition quality evaluators for SVM were calculated according to 
SVM light terminology: 

a. Accuracy = (overall number of true classified objects)/(overall number 
of objects for examination). 

b. Precision = (number of true classified objects in positive (+1) 
class)/(overall number of objects in positive (+1) class). 

c. Recall =(number of true classified objects in positive (+1) 
class)/(number of true classified objects in both classes). 

8. The same set of 3 evaluators was calculated for the SP-SVM recognizer. 
 
 

4.2. Benchmark 
 
We made experiments with different data sets. Inasmuch as all the results and all 

the open problems were rather common for all the sets we decided that in this first report 
we illustrate the method implementation on only one Benchmark: Vowel dataset and to 
prepare a separated report only about the experiments on the different Benchmark sets. 

The Vowel dataset contains 992 points, corresponding to 11 English vowel 
sounds, represented by 10 features and a label. The features are derived from analysis of 
sample windowed segments of the speech signal and are real-valued. 

Dataset is available from website of Hastie, Tibshirani, Friedman (HTF) book: 
http://www-stat-class.Stanford.EDU/~tibs/ElemStatLearn/ 
(in Data section). It is also in UCI (format is somewhat different than on HTF website) 
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/undocumented/connectionist-
bench/vowel. 

We extracted only the first two classes from this dataset. 
 
 

4.3. Results 
 

The data was centralized and normalized by columns: 
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( )
ii

ii
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x
−
−

=
x
xx̂ ,  i=1,…,M, 

 

where ∑
=

=
trainN

j

j
i

train
i x

N
x

1

1 , Ntrain is number of objects only in training set. 

Calculating ii xx −  as norm over only the training objects. 
There were generated 20 sub matrices. 31 random uniform selections of parameter 

A from interval10 P=[0.17* , 0.6* ] were done for each sub matrix. 0

,...,1
min iMi

w
=

0

,...,1
max iMi

w
=

The results presented in Tables 1, 2.  
In Table 1 presented results of comparison of maximal Accuracy of saddle point 

in the examined interval P with SVM results for a same data submatrix. Maximum of 
Accuracy is taken over all the 31 choices of parameter A from the interval P. These 
results show possibilities to decrease the feature space and to increase recognition quality 
simultaneously. 

Let us remark that these results prove only the existence of an optimal value of 
parameter A, which gives maximal Accuracy on the recognition stage. The choice of this 
optimal value is a plan of our future investigations. This is the reason that we tried to 
choose this parameter in a very simple way: to chose such A’ that gives an average value 
of the optimized saddle point criterion. Once more, average is taken over all the 31 
choices of parameter A from the interval P. The results of this set of experiments 
presented in Table 2. 

One can see from the Table 1 that the Maximal Accuracy of saddle point is in 
average 5-7% better than SVM Accuracy, in some cases this difference exceeds 15%. At 
the same time approximately half of the variables are eliminated (the average number of 
eliminated variables over all the 20 submatrixes is 4.6 from 10). Average SVM Accuracy 
is 70.64; average saddle point Accuracy is 78.35. The Accuracy obtained with saddle 
point algorithm is better than the SVM Accuracy in 18 cases from 20. In case 8 saddle 
point and SVM Accuracies are equal. The only case of saddle point accuracy greater than 
SVM accuracy is case number 18. Let us remark that the SVM Accuracy in this case has 
a large value for the examined material and saddle point Accuracy is approximately the 
same. One can see that even if 70% of variables are eliminated (cases 3 and 11) the 
saddle point Accuracy is greater than the SVM Accuracy. 

Obviously the results of the second set of experiments are worse. We add a 
column 3 to the Table 2. This column shows that in approximately 39% of all the 
20*31=620 experiments the value of saddle point Accuracy is not worse than the value of 
SVM Accuracy. Average SVM Accuracy is 70.64; average saddle point Accuracy is 
70.0. For the choice of result corresponding to average of saddle point values on interval 
P only in 8 cases from 20 the saddle point Accuracy is better than the SVM Accuracy. In 
cases 3,5,20 the saddle point Accuracy is much worse than the SVM Accuracy. In other 8 
cases when saddle point Accuracy is worse than the SVM Accuracy it is still not much 
more badly. At the same time the number of deleted variables is rather big. In average 5.6 

                                                 
10 w0 is a normal of hyperplane for A=0. 
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variables from 10 were eliminated. Once more cases 7 and 11 remove 70% of variables 
and the Accuracy remains very close to the SVM Accuracy, only a little worse. 

This analysis of Table 2 shows that even in case of such simple choice of 
parameter A the algorithm does feature selection without big losses in Accuracy. Analysis 
of Table 1 shows that to find a method of searching for an optimal A is a very important 
task.  

 
Number of 
Submatrix 

Number of 
Objects in 
Submatrix 

Accuracy 
SVM 

Max 
Accuracy 
Saddle 
Point 

Precision in 
Max Accuracy 
SP  
(SVM 
Precision) 

Recall in 
Max 
Accuracy SP 
(SVM 
Recall) 

Number 
of deleted 
variables 
in Max 
Accuracy 
SP (zi=0) 

Number 
of 
definitely 
assigned 
variables 
in Max 
Accuracy 
SP (zi=1) 

1 18 75.3 80.24 98.76 
(95) 

61.53 
(63.1) 

4 2 

2 30 75.33 85.33 93.33 
(76) 

54.68 
(50.44) 

5 2 

3 20 52.5 68.125 66.66 
(25) 

51.37 
(25) 

7 1 

4 24 68.58 80.76 88.46 
(70.51) 

54.76 
(51.4) 

6 1 

5 15 50.3 72.72 62.79 
(4.65) 

45  
(4.81) 

6 1 

6 29 74.17 79.47 89.61 
(84.41) 

57.5 
(58.03) 

5 1 

7 21 80.5 83.64 98.71  
(93.58) 

57.89 
(57.03) 

5 1 

8 24 67.3 67.3 51.28  
(51.28) 

38.09 
(38.09) 

1 7 

9 26 68.83 72.07 100 
(100) 

65.76 
(68.86) 

6 3 

10 21 64.77 77.98 72.83 
(65.43) 

47.58 
(51.45) 

6 1 

11 28 75.65 80.92 86.3 
(84.93) 

51.21 
(53.91) 

7 1 

12 24 76.28 80.12 81.48 
(67.9) 

74.07 
(52.8) 

0 7 

13 15 68.94 88.81 83.54 
(100) 

46.15 
(71.17) 

6 2 

14 19 71.875 83.75 83.95 
(64.19) 

50.746 
(45.21) 

5 3 

15 20 76.31 86.18 84.81 
(74.68) 

51.145 
(50.86) 

6 2 

16 28 72.04 77.63 82.92 
(89.02) 

54.4 
(62.93) 

6 2 

17 19 74.54 80.6 86.74 
(74.69) 

54.13 
(50.4) 

3 2 

18 15 84.21 82.89 78.48 
(83.54) 

49.2 
(51.56) 

0 8 

19 24 76.92 79.48 82.05 
(80.76) 

51.61 
(52.5) 

6 1 

20 21 58.49 59.1 55.12 
(84.6) 

45.74 
(70.96) 

2 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1. Vowel Data Processing. 

Maximal Accuracy. 
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Number of 
Submatrix 

Number 
of Objects 
in 
Submatrix 

% of times 
when (Saddle 
Point Accuracy 
≥ SVM 
Accuracy) in 
experimental 
interval 

Accuracy 
SVM 

Accuracy 
Saddle Point 
corresponding 
to average 
value of 
criterion in 
experimental 
interval 

Precision in 
Saddle Point 
corresponding 
to average 
value of 
criterion in 
experimental 
interval 
(SVM 
Precision) 

Recall in 
Saddle Point 
corresponding 
to average 
value of 
criterion in 
experimental 
interval 
(SVM Recall) 

Number of 
deleted 
variables in 
Saddle Point 
corresponding 
to average 
value of 
criterion in 
experimental 
interval (zi=0) 

Number of 
definitely 
assigned 
variables in 
Saddle Point 
corresponding 
to average 
value of 
criterion in 
experimental 
interval (zi=1) 

1 18 100 75.3 77.16 100 
(95) 

64.8 
(63.1) 

3 4 

2 30 61 75.33 85.33 93.33 
(76) 

52.0 
(50.44) 

5 2 

3 20 23 52.5 46.87 0 
(25) 

0 
(25) 

6 1 

4 24 94 68.58 74.35 71.79 
(70.51) 

48.27 
(51.4) 

5 1 

5 15 55 50.3 47.87 0 
(4.65) 

0  
(4.81) 

5 1 

6 29 42 74.17 78.14 94.8 
(84.41) 

61.86 
(58.03) 

5 2 

7 21 31 80.5 74.84 84.61 
(93.58) 

55.46  
(57.03) 

7 1 

8 24 10 67.3 62.82 61.53 
(51.28) 

48.97  
(38.09) 

5 2 

9 26 13 68.83 61.68 100 
(100) 

76.84 
(68.86) 

8 1 

10 21 23 64.77 61.0 34.56 
(65.43) 

28.86 
(51.45) 

6 1 

11 28 77 75.65 72.36 87.67 
(84.93) 

58.18 
(53.91) 

7 1 

12 24 13 76.28 75.0 66.66 
(67.9) 

46.15 
(52.8) 

6 2 

13 15 20 68.94 88.19 82.27 
(100) 

45.77 
(71.17) 

6 2 

14 19 55 71.875 69.37 54.32 
(64.19) 

39.6 
(45.21) 

5 3 

15 20 29 76.31 82.23 81.01 
(74.68) 

51.2 
(50.86) 

6 2 

16 28 35 72.04 74.53 84.14 
(89.02) 

57.5 
(62.93) 

5 3 

17 19 55 74.54 70.9 67.46 
(74.69) 

47.86 
(50.4) 

3 3 

18 15 0 84.21 69.07 55.69 
(83.54) 

41.9 
(51.56) 

6 1 

19 24 45 76.92 78.84 79.48 
(80.76) 

50.4 
(52.5) 

6 1 

20 21 6 58.49 49.68 61.53 
(84.6) 

60.75 
(70.96) 

7 3 

Table 2. Vowel Data Processing. 
Average value of optimized criterion in experimental interval. 
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5. Exact Wrapped Method for Feature Selection in Regression 
 

The SVM linear regression model is based on the same ideas [1]. Suppose that we 
have a training sample {xi, yi},  xi∈RM, yi∈R, i=1,…,N. Margin maximization (VC-
dimension minimization) now reflects in attempt to approximate as more as possible 
experimental points with y-axe ε-tube: 
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                                                                          (31) 

 
 
The same as in the classification case: to approximate all the points with ε precision can 
be infeasible task, and a structural risk minimization is needed: 
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                                                          (32) 

 
 
which means that the points into the ε-tube do not penalized and the points outside the ε-
tube penalized linearly. This problem has the following dual: 
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 The same way we introduce a feature selection problem 
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and nest this problem into a continuous one 
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Thus we ones more obtain a convex-concave function on a close convex set we transfer 
here straightforward the results of the previous section. 
 

1) There exists a saddle point (z*, λ*, λ** ) of problem (35): 
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3) A component zl of a saddle point (z*, λ*, λ** ) of problem (36) can be different 
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4) Let (z(34)
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**) is a solution of problem (34), (z{0,1}
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**) is a 

saddle point of (31) with every 0<zj<1 arbitrary changed to 0 or 1. The solution of 
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reflects a l-th hyperplane slope significance. 
 
 

6. Nonlinear Kernels.  
 

6.1. Negative Attempt of Generalization 
 

It may seem that the results of this work can be easily transferred to nonlinear 
kernels. Let us show that this way immediately took us to no convex problems. Let us 
discuss the following problem: 
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For one-dimensional case it reduced to: 
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The necessary and sufficient condition for convexity of 2 times differentiable function is 
F’’(z)≥0 (F’’(z)≤0 for concavity). The second derivative of F(z) is: 
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 This function is non-negative if matrix aij=
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 is negative 

semidefinite and vice versa. 
Let us assume an example of three points on a line with distance 2σ between the 
successive ones. Let yj=+1 on the extreme points and yj=-1 on the medium point. 
Let us take only two successive points. We obtain the following matrix aij: 
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z

z

e
e
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Choose λ=1, and z=0. We obtain that F’’(z)=-(1/2)*(-16)=8 > 0. 
 
Now take all the 3 points. We obtain the following matrix aij: 
 

0464
404
6440

28

22

82

zz

zz

zz

ee
ee
ee

−−

−−

−−

.  

 
Once more choose λ=1, and z=0. We obtain that F’’(z)=(-1/2)*(128-16)=-56<0. 
We see that a sign of F’’(z) is changed and depends on a sample distribution in space.  
 

6.2. Indirect Kernel Method 
 

Indirect Kernel method is very popular in the present time. It consists of two 
steps: 

 
1) To chose a Kernel function K(x,y) and to fill out the matrix 

K=||K(xi,xj)||, i,j=1,..,N, where (xi,xj) is a pair of objects. 
2) To use matrix K “object-object” as a matrix “object-feature” and 

to run linear SVM algorithm on this data matrix. 
 
This method sometimes gives better results than the straightforward application of 
nonlinear kernels.  
 In our case, we can apply SP-SVM to this scheme. Objects and features here have 
the same sense, therefore if i-th object became a support vector, but it has weight zi=0, 
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then one can suppose that it may be not taken to account. It means that SP-SVM can 
decrease drastically number of support vectors in indirect kernel method. 
 This assumption was not investigated in the present work; its study is in one of 
our future plans.  
 
 
Appendix 1. Saddle Point Algorithms 

This Appendix is dedicated to description and brief analysis of the saddle point theory, methods 
and algorithms. We didn’t find such survey in literature.  

As it was mentioned in the Introduction of the report we consider the saddle point extremes as 
very interesting structures, which match many ideas of simultaneous search in multiple criteria problems. 
We have emphasized several of the problems on the end of the Introduction. In the section 5 we have 
showed that presented in the report simultaneous analysis to build a classifier and to find "the best 
subspace" in which the classifier has to work can be directly extended to the regression model construction 
together with finding the best subspace for the model. We are sure that in every such different case one has 
to develop different type of the saddle point algorithm. For this reason it is important to have a survey in 
which one could a foundation of these algorithms, which will allow her or him to do the development. This 
was the basic reason for us to add to the report this survey. It was also an additional reason: (a) we hope to 
find collaborators who will find an interest to develop new learning methods based on the saddle points 
structures and who will decide to do a study to develop efficient saddle points procedures. For such readers 
it is convenient to have a complete picture about the new technology.11 
 The Appendix organized as following. 
 Section A1.1 dedicated to the main theoretical principles of saddle point of convex-concave 
function on a convex compact [3-8]. The saddle point existence theorems are formulated. The principle of 
separate search for the saddle point components is assigned here. This principle is the basis of our 
algorithm, which is described in section 4. The end of this section illustrates impossibility of gradient 
search for saddle points. A simple example from [8] shows that the trajectory of search can enter a loop, 
which never converges to a saddle point. This fact motivated a lot of theoretical investigations and various 
approaches to saddle point search.  
 Section A1.2.1 contains notions that are necessary for understanding of non-differentiable convex 
optimization theory and algorithms [3-8]. Some of them, such as duality gap estimator (A5) and 
subgradient (Definition A3) are important for our scheme described in Section 4. 
 Sections A1.2.2 – A1.2.4 describe methods of saddle point search for a smooth function on a strict 
convex set [3]. This section is written to introduce additional notions and principles, which will be useful in 
further analysis. Here we introduce such notions as iterative sequence, iterative step, and projection 
operator. All these notions used by us in Section 4. 
 Sections A1.2.5 – A1.2.6 dedicated to theoretical analysis of controlled continuous gradient 
processes [7-9, 43, 44]. These processes were introduced to theoretical understanding of saddle point 
convergence problems and to construct schemes for their solving. It played very important role in our 
understanding of algorithm convergence problems in our own scheme. 
 Section A1.2.7 contains an example of algorithm using a principle of parallel search for the saddle 
point components [13]. This principle was implemented in our scheme as we mentioned above. 
 Section A1.2.8 describes so-called “perturbation method” for saddle point search [17-19] with 
non-cooperative game interpretation. 
 Method of levels described in sections A1.3.1 – A1.3.2 is important as a proof of polinomiality of 
saddle point search [14-15].  

                                                 
11 As we have mentioned several times our polynomial algorithm described in the section 4., even it is 
enough, to analyze well some practical problems it has a strong limitation. It can work only with training 
data of very small size (not more than 100-200 objects). At the same time we are sure that it could be 
modified to be able to work with "real for pattern recognition case" training data of size of many thousand 
objects. We hope that the survey gives a base to improve the algorithm to work on a large data. 
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 The conditional ε-subgradient method [20] described in section A1.3.3 was chose by us as a first 
attempt to apply it to our problem. This method had been seemed us interesting from one hand because it 
was applied by its authors and there are some works contain results of its practical work. From the other 
hand its principle of searching only for one component of saddle point and simultaneous calculation of the 
second one seemed our important. Unfortunately we obtained very poor convergence results for this 
scheme and decided that it is not applicable for our problems. 
 Section A1.3.4 describes an interior-point scheme in the saddle point search. We describe a 
polynomial method for a very special class of saddle point problems [21]: convex-concave function with 
one of its components taken from the space of symmetric positive semidefinite matrices. 
 

A1.1. Introduction 
 
This section dedicated to the main theoretical principles of saddle point of convex-concave 

functions. 
Let function L(x,y)∈R, (x,y) ∈X×Y, X and Y some sets. 

Definition A1.  Point (x∗,y∗)∈X×Y satisfying condition 
 

L(x*,y)≤ L(x*,y*) ≤ L(x*,y), ∀x∈X,∀y∈Y                                                                      (A1) 
 
 
is a saddle point of function L(x,y) on X×Y 

  
 

Equivalent condition for existence of saddle-point is the following equation: 
 

),(),( yxLminmaxyxLmaxmin
XxYyYyXx ∈∈∈∈

=                                                                                        (A2) 

 
given all min and max values exist. 
 
Let’s introduce functions: 
 

),()( yxLminy
Xx∈

=ϕ                                                                                                                     (A3) 

),()( yxLmaxx
Yy∈

=ψ                                                                                                                    (A4) 

 
Proposition A1 [3].  If X⊂RN, Y⊂RM compact sets and L(x,y) a continuous function on X×Y then existence  

of  saddle-point of function L(x,y) on X×Y is equivalent to fulfillment of (A2).  

Remark A1. For saddle-point (x∗,y∗) we have  
 

),(),(),( ** yxLyxLminmaxyxLmaxmin
XxYyYyXx

==
∈∈∈∈

 

 
and 
 

)()(),()()( **** xminxyxLyymax
XxYy

ψψϕϕ
∈∈

==== . 

 
So we can estimate L(x*,y*) as following: 
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YyXxxyxLy ∈∀∈∀≤≤ ,),(),()( ** ψϕ .                                                                        (A5) 
 
 

Definition A2.  Function L(x,y),x∈X,y∈Y is called convex-concave function on X×Y if L(x,ȳ) is convex by  
x∈X for any fixed ȳ∈Y and L(x̄,y) is concave by y for any fixed x̄.  
Proposition A2.  Let X∈Rn, Y∈Rm  are closed, bounded, convex sets, convex-concave function 

L(x,y),x∈X,y∈Y is continuous on Ω=X×Y. Then function L(x,y) has saddle-point (x*,y*).  
 
See for example [6]. 

From now we assume that X∈Rn, Y∈Rm  are compact convex sets, function L(x,y), x∈X,y∈Y is 
convex-concave and continuous on Ω=X×Y. 

Let’s introduce sets: 
 

                               X*=argmin{ψ(x):x∈X}                                         (A6) 
 

                 Y*=argmax{ϕ(y):y∈Y}                                         (A7) 
 

Any point (x,y)∈X*×Y* is a saddle-point of L(x,y). 
It’s well known that ψ(x) is convex and ϕ(y) is concave. So we have the straight-forward method 

to calculate saddle-point of L(x,y): 
• Solve convex problem ( )xmin

Xx
ψ

∈
 and get x-component of saddle-point (x*, y*). 

• Solve concave problem ( )ymax
Yy

ϕ
∈

 and get y-component of saddle-point (x*, y*). 

Notice that if we need to find only x-component or y- component of saddle-point then only one of 
the optimization problem must be solved. 

And we will see later in conditional ε-subgradient method that we don’t need to solve both 
problems and while search for x-component y-component can be constructed via some average scheme. 

Let’s look at a example from [8]:  
 
L(x,y)=x⋅y,    X=[-1,1],    Y=[-1,1]                                                                                             (A8) 
(0,0) - is a saddle-point of L(x,y): 0⋅y≤0⋅0≤x⋅0. 
 
This example shows that in general it is insufficient to solve only one of the problems  
)(xmin

Xx
ψ

∈
and )(ymax

Yy
ϕ

∈
 to find saddle point. We can try to apply standard gradient method:  

descend by x and ascend by y. This gradient method can be written in the form:  
 

ay
dt
dx

−= ,  ax
dt
dy

= ,  a>0,  x(t0)=x0,   y(t0)=y0. 

 
 

Then xdx+ydy=0 and x2+y2=r2. We see that trajectory of gradient method does not converge to saddle- 
point. 

This example demonstrates that standard optimization methods do not directly extend to saddle- 
point search problem. 
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A1.2. Algorithms for Saddle-Points Search 

A1.2.1. Theoretical Background and Notions 
 

This section contains notions that are necessary for understanding of non-differentiable convex 
optimization theory and algorithms. 

By (x,y) we denote scalar product of vectors x and y, LX(x,y) and LY(x,y) are partial derivatives of  
function L(x,y).  

Strict convexity of a set X means that 10,,, 2121 <<≠∈∀∈∀ λxxXxXx  point 

( ) 21 1 xx λλ −+  is an interior point of X. 
Strong convex function f with constant l > 0 is a function that satisfies the following inequality: 

.10   ,
2

  
)1()()1()())1((

2

≤≤
−

−−−+≤−+ λλλλλλλ
yx

lyfxfyxf  

 
For differentiable function f strong convexity is equivalent to the following inequality: 
 

nyx
yl

yxfxfyxf R∈∀+∇+≥+ ,   ,
2
  

)),(()()(
2

. 

 
Some algorithms described below require functions satisfy Lipschitz constraints. The following 

lemma from [3] states that convex function is a Lipschitz function on any convex bounded set. 
Lemma 1. Let f(x) is a convex function, G⊂Rn, G is a convex bounded set. Then there exists C < ∝ 

such that GyxyxCyfxf ∈∀−≤− ,   ,  )()( . 
Various methods for saddle-point computations were analyzed in [12]. 

The main device for analysis is the following function:  
 
Φ(z,w)=L(u,y) - L(x,v), z=[x,y],w=[u,v].                                                              (A9) 
 

Let z*=[x*,y*]∈Ω=X×Y then  
 

( ) ( ) *** z    ,, ⇔Φ=Φ
Ω∈

wzwzmin
w

is a saddle point of  L(x,y).                                          (A10) 

 
Let L(x,y)∈C1 and  

 
h(z)=Φw(z,z)=[Lx(x,y),-Ly(x,y)]                                      (A11) 

 
If z*∈Ω - saddle-point then  

 
    ( ) ( )( ) 0,min *** =−=

Ω∈
zwzhz

w
ψ                                                                                           (A12) 

 

otherwise we have descent direction of  Φ(z*,w) in the point (z*,z*) and remain in Ω. But this contradict  
with  (A10). 

Condition (A12) is also sufficient for z∗ to be a saddle-point. 
 
Analysis of non-smoothed functions based on the subgradient notion: 

Definition A3.  Let f(x) - convex function on Rn. Vector a∈Rn is called subgradient of function f(x) in point 
x if the following inequality satisfied: 
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f(x+y)≥ f(x)+(a,y), ∀y∈Rn. 
 

and denoted by ∂f(x).  
See for example [5]. 
 

A1.2.2. Conditional Gradient Method 
 

This section describe method of saddle point search for a smooth function on a strict convex set 
[3]. 

According to (A12) the following function introduced: 
 

( ) ( )( 0,min =−=
Ω∈

zwzhz
w

)ψ                                                                                                 (A13) 

 
and point θ(z)∈Ω that gives minimum value in (A13) : ψ(z)=(h(z),θ(z)-z). 

So in conditional gradient method the sequence {zk} built such that ( ) 0→kzψ  and limit of {zk} 

is saddle-point z*: 

( )
( ) .  
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α

αα
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θζαζ

k[0,1]αk

kkkkkkkk

zminarg
zzzzzz
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−=+==

Ω∈
                                                                                     (A14) 

 
Theorem A1[3]. If L(x,y)∈C1(Ω), Ω - strict convex compact, h(z)≠0 on Ω then sequence (A14) has  

following properties: 

1. 0)( →kzψ  and limit of {zk} is saddle-point z∗. 

2. If ψ’(z) is Lipschitz function on Ω then )1()(
k

Ozk =ψ . 

3. If ψ ’(z) is Lipschitz function on Ω, L(x,y)∈C2(Ω) and strong convex-concave:  
(Lxx(z)u, u) ≥ m||u||2,  (-Lyy(z)v, v) ≥ m|| v ||2, m > 0 then 

 

( ) ( ) 1,    0 << qqzz k
k ψψ  and ( ) .  2 0

2* k
k qz

m
zz ψ≤−  

 
We see from theorem that conditional gradient method requires the strict convexity of Ω to guarantee 

convergence and cannot been applied to polyhedral sets. For example, X=[0;1]n - is not strict convex set. 
On other hand if our saddle-point search problem satisfy conditions of theorem then we must have ”quick” 
procedure to solve problem (A13). 

Let πΩ. - projection operator on Ω: 

 
( ) ( )      , .. zwminzzz

w
−=−Ω∈

Ω∈ΩΩ ππ .                                                                        (A15) 

 
The most part of the algorithms described below use projection operators, which demands effective 
procedures for their calculation. For example: projection on set l≤x≤ b is trivial task and projection on set 
Ax≤b requires a quadratic programming solution. 
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A1.2.3. Gradient Projection Method 
 

This section describes saddle point search algorithm that use projection operator that also used in 
our saddle point search algorithm from section 4.  

Gradient projection method uses the following result:  
 

( )( ) ****
. 0, zzzhz ⇔>=−Ω ααπ is a saddle point of L(x,y).                          (A16) 

 
The following iterative sequence used to find a saddle-point:  

 
( )( )kkk zhzzz *

1 απ −= Ω+ , k=0,1,2,…                                                                      (A17) 
 

where z0∈Ω and α is sufficiently small. 
 

Theorem A2[3]. If the following is true: 
1. L(x,y)∈C1(Ω), 
2.  (h(z)-h(w), z-w)≥ m(r)||z-w||2, z,w∈Ωr and  

||h(z)-h(w)||≤ M(r)||z-w||,z,w∈Ωr, where Ωr=(z∈Ω  : ||z0-z||≤ r), m(r)≥ 0 is a non-increasing 
function, M(r)is a non-decreasing function, 

3. ∃r0>0 with r0m0(r0) > ||h(z0)||, 

4. ( ))()(
)(

20 02
0

zhrrm
rrM

sup
r

−<<
>

α , 

 
then sequence (A17) converges to a saddle point z* with linear speed: 
 

|| zk – z || ≤ Cqk, q <1. 
 

A1.2.4 Extensions of Brown-Robinson Method for Matrix Games 
 

This section describes one of the first saddle-point search algorithm that was developed and was 
reported to have bad performance on practice.   

Let  

∑
∞

=

∞=→∈
1i

kkk α0,α(0,1],α  

and k-approximation [xk,yk]∈Ω found. Find uk - minimum of L(x, yk) on X, find vk - maximum of  

L(xk, y) on Y. 
Calculate next approximation: 
  

xk+1 = xk + αk(uk-xk),  yk+1 = yk + αk(νk-yk). 
 
Sequence {[xk,yk]} converges to saddle-point. But it’s well known that speed of convergence of 

Brown-Robinson method and its generalization is very low. For example Brown-Robinson method applied 
to matrix game has following approximation error for game-value on k-iteration: 

2
1

2 −
−

≤ nn
ij kamaxerror , (aij) - game matrix, n-dimension of (x,y). 

We can also mark the absence of results of comparative tests for various methods for saddle-point 
problems. 

In last decade considerable progress was made in understanding of saddle-point problems and new  
algorithms were proposed: 
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• Controlled continuous gradient processes [7-9], 
• Bundle and levels methods [14-16], 
• Perturbation methods [17-19], 
• Subgradient methods [20], [36] . 
 

A1.2.5. Controlled Saddle Differential Gradient Processes 
 

This method gives continuous interpretation of saddle-point search process.12 It is more 
”theoretical” than practical algorithm at first sight. Yet iterative variants of algorithm can be written. 
Method says that feedback control must be used in saddle-point search process. 

We’ll see that some kind of feedback is present in other algorithms of saddle-point problem: 
perturbation, ”probe” step, etc. Following notations from [8] we have saddle-point problem: 

 
, , ),,(),(),( **** nn RPpRQxpxLpxLpxL ⊂∈∀⊂∈∀≤≤                                  (A18) 

 
where L(x,p) differentiable convex by x and concave by p and P, Q are closed and convex sets. 

Necessary conditions for (x∗,p∗) to be a saddle-point is: 
 

( )( )
(( ,,

,,
****

****

pxLpp
pxLxx

pP

xQ

∇+=
∇−=

απ
απ

))                                                                                              (A19) 

 
where πQ-projection operator on Q, πP-projection operator on P,∇Lx(x,p), ∇Lp(x,p) - gradients of 

L(x,p) by x and p. 

So (x∗,p∗) can be considered a fixed point of operator given by right side of (A19). 

x*=arg min {L(z,p*) : z∈Q} 
p∗=argmin{-L(x∗,y):y∈P}                                                 (A20) 

 
Introduce the same function as in (A9): 

Φ(v,w)=L(z,p)-L(x,y),w=[z,y],v=[x,p].                                                          (A21) 
 
Problem 

v*∈argmin{Φ(v*,w):w∈Ω=P×Q}                                                                      (A22) 
 
is equivalent to problem (A20). Necessary and sufficient conditions for (A22) is: 

 

v∗=πΩ

                                                

(v∗-a∇Φw(v∗,v∗)) .                                                                             (A23) 

 

A1.2.6. Method 
 

 
12 For more information about this method see its author’s (A. Antipin) personal Web page: 
http://www.ccas.ru/antipin/.index.html.  
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Discrepancy or difference between left and right side of (A23) (equal to zero only in point v*) 
gives transform Ω→Rn+m. 

Direct image of transform can be considered as vector field with stationary point v*. 
Lets state the problem to build trajectory such that linear combination of velocity vector and 

acceleration vector was equal to direction of vector field. If velocity and acceleration vectors are equal to 
zero in some point of vector field then trajectory remain in this point. In our case linear combination of 
velocity vector and acceleration vector is equal to zero in saddle point. 

This problem described by system of differential equations: 
 

( ) ( )( ) ( ) ( )
••

Ω ==Φ∇−=++ 0
0

0
02

2

,  ,,)( vtvvtvvvtavv
dt
dv

td
vdt wπµ .                           (A24) 

 
 

System of first order with µ(t)=0 was investigated in [9]. Continuous systems of first order also 
were investigated in [10]. 

Equation (A24) is composition of the system:  

( ) ( )( )

( ) ( )(

( ) ( ) ( ) ( ) .,,,

,,)(

,,)(

0
0

0
0

0
0

0
0

2

2

2

2

••••

====

∇−=++

∇−=++

ptpptpxtxxtx

pxLtapp
dt
dp

td
pdt

pxLtaxx
dt
dx

td
xdt

pP

xQ

πµ

πµ

)                                                                  (A25) 

 
Right side of (A24) or (A25) is non–expansive operator and for t³t0 and "v0 there is unique trajectory 

of (A24) that nearly aways does not convergence to v*. To make trajectory of (A24) to convergence to v* 
Antipin proposes to use feedback control. In general case feedback control have the form: 

 

2

2

,   ),,,(
dt

vdv
dt
dvvwherevvvuu === &&&&&& . 

 

In equilibrium points the feedback is equal to zero: u , where 0),,( == vvvu &&& ( ) ( ) **, vvv &&&&&& =∞=∞v . 
The choice of proper feedback must provide convergence of trajectory to equilibrium. To gain this aim lets 
introduce additive control to system (A24): 

( ) ( )( ) ( ) 0
0

0
02

2

,  ,,)( vtvvtvvuvtavv
dt
dv

td
vdt w && ==+Φ∇−=++ Ωπµ ( ) .                          (A26) 

 

and state the control problem: from some class of controls choose control that provide 

convergence of trajectory of (A24) to equilibrium state v* beginning from arbitrary initial state v0. 

),,( vvvuu &&&=

General principles of dynamic control by various forms of feedback were investigated in [11]. 

Gradient processes controlled by derivative.  

Lets control has the following form 
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u=µ(t)v&&+v&.                                                                                                        (A27) 
 

The system (A26) closed by control (A27) takes the form: 
 

( ) ( ) ( ) ( ) 0
0

0
02

2

,,,)( vtvvtvvvtvvtavv
dt
dv

td
vdt w &&&&& ==














 ++Φ∇−=++ Ω µπµ .   (A28) 

 
This differential system may cause some problem while numerical integration. 

For example, iterative version of (A28) has unsolved for vn+1form: 

vn+1=f(vn+1,vn,vn-1) , where f is nonlinear function. 
 

Theorem A3 [8].  If 
 

1. Problem (A18) has nonempty solution set. 
2. Function Φ(v,w) defined as (A21) satisfies Lipschitz conditions:  

              ( ) ( ) ( )( ) Ω∈+∀Φ≤Φ∇−Φ−+Φ whwwhhwvwvhwv w ,,, 
2
1,,,, 2

. 

3. Ω - convex, closed set. 
4. a(t)∈C[0;∞],  , ( ) [ ]∞∈ ;02Ctµ

a(t)≤a0,  µ& (t)≤0, µ&&(t)≥0, t≥0 

( ) ∞→
= µµ tlim

0t
,  00 >−Φ− ∞µa1 , 

 
then 

00 ,vv &∀  trajectory of process (A34) converges to a saddle-point: 

( ) ( ) Ω∈=→= *** ,)(),()( pxvtptxtv , for t →∝. 
  

Remark A2. There are exist functions a(t) and µ(t) that satisfy conditions of theorem:. 

a(t)=a0 



1+ 

1
t+1 ,  µ(t)=µ∞+ 

1
t+1 , 

a0 and µ∞ such that  1-a0 | |Φ -µ∞>0 . 

Remark A3. The first condition of theorem is satisfied when L(x,p) is continuous on Ω . 
 

Gradient processes controlled by discrepancy 
 

Gradient processes controlled by derivative has implicit form by derivative. To get explicit differential 
systems the control by discrepancy introduced: 

 
u=πΩ(v-a∇Φw(v,v))-v                                                                              (A29) 

 
The system (A24) closed by control (A29) takes explicit differential system: 

( ) ( )( ) ( ) ( )
••

Ω ==Φ∇−=++ 0
0

0
02

2

,,,)( vtvvtvvvtavv
dt
dv

td
vdt wπµ ,                            (A30) 
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where 

 

v̄=πΩ(v-a∇Φw(v,v)) .                                                                             (A31) 

 
Theorem A4.[8]. If 

1. Problem (A18) has nonempty solution set. 
2. Function Φ(v,w) defined as (A21) satisfies Lipschitz conditions:  

              ( ) ( ) ( )( ) Ω∈+∀Φ≤Φ∇−Φ−+Φ whwwhhwvwvhwv w ,,, 
2
1,,,, 2

. 

               ( ) ( ) Ω∈+∀Φ∇≤Φ∇−+Φ∇ whvvhwvwhv ww ,,, ,, . 

3. Ω - convex, closed set. 
4. a(t)∈C[0;∞],  , ( ) [ ]∞∈ ;02Ctµ

a(t)≤a0, µ& (t)≤0, µ&&(t)≥0, t≥0 

( ) ∞→
= µµ tlim

t 0
,  1 0)(2 >−− ∞ tµµ & ,   02 22

00 >Φ∇−Φ− aa1 , 

 
then 

∀ v0,v&0 trajectory of process (A34) converges t  a saddle-point: o
( ) ( ) Ω∈=→= *** ,)(),()( pxvtptxtv ,  for t →∞.  

 

Gradient processes with mixed control 
 

The mixed control is control of variable x by derivative and control of variable p by discrepancy: 
 

( ) ( )( ppxLtapu PP )−∇+= ,1 π                                                                             (A32) 

( ) xxtu &&& += µ2  
The system closed by control (A32) takes the form: 
 

                    ( ) ( )( ,,)( 2

2

pxLtaxx
dt
dx

td
xdt xQ ∇−=++ πµ )                                                 (A33) 

                   ( ) ( )( ),,)()( 2

2

pxtxxLtapp
dt
dp

td
pdt pP &&& µπµ ++∇−=++

          
                       (A34) 

                                                                            (A35) ( ) ( ) ( ) ( ) .,,, 0
0

0
0

0
0

0
0

••••

==== ptpptpxtxxtx

where 
 
                        ( ) ( )( pxLtapp PP ,∇+= )π .                                                                                       (A36) 
 
Theorem A5 [8]. If 

1. Problem (A18) has nonempty solution set. 
2. Convex-concave function L(x,p) satisfies Lipschitz conditions:  

              ( ) ( ) ( )( ) PpQhxxhLhpxLpxLphxL x ∈∈+∀≤∇−−+ ,,,
2
1,,,, 2

1 , 
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              ( ) ( ) ( )( ) QxPhpphLhpxLpxLhpxL p ∈∈+∀−≥∇−−+ ,,,
2
1,,,, 2

2 , 

              ( ) ( ) hLpxLphxL pp  ,, ∇≤∇−+∇ . 

3. Q,P - convex, closed sets. 
4. a(t)∈C[0;∞],  , ( ) [ ]∞∈ ;02Ctµ

a(t)≤a0,














∇

−∇+
≤ 2

1
2

1

2
0

4

8
,1

L

LLL

L
mina ,  µ& (t)≤0, µ&&(t)≥0, t≥0 

( ) ∞→
= µµ tlim

t 0
,  1 02 >− ∞µ ,   02 22

010 >−∇−− ∞µLaLa1 , 

 
then 

0000 ,,, pxpx &&∀  trajectory of process (A34) converges to a saddle-point: 

( ) ( ) PQpxtptx ×∈→ **,)(),( ,  for t →∞.  
 
 

A1.2.7.  Extragradient Method 
 

Extragradient method [13] alters gradient method (that does not work, as we saw from example 
(A8)) in a following way. 

The main idea of algorithm is to make ”predict” step in gradient direction of L from current point. 
Calculate gradient in this ”probe” point and use this gradient for step from current point. 

Let 

1. X⊂Rn,Y⊂Rm closed, convex sets. 
2. L(x,y)-convex-concave, differentiable function and partial derivatives LX(x,y), LY(x,y) satisfy 

Lipschitz conditions:  
 

( )2
1

22 '' )','(),( yyxxCyxLyxL xx −+−≤− , 

( )2
1

22 '' )','(),( yyxxCyxLyxL yy −+−≤− . 

 

3. Set of saddle-points X∗×Y∗ is not empty.  

Algorithm 
 
Prediction. Calculate ”probe” point 

 
( )( )kk

x
k

X
k yxLxx ,απ −=  

( )( )kk
y

k
Y

k yxLyy ,απ +=  
 
Step. Calculate next point 

 
( )( )kk

x
k

X
k yxLxx ,1 απ −=+ , 
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( )( )kk
y

k
Y

k yxLyy ,1 απ +=+ . 

 

Theorem A6[13]. If 0<α<1/C then sequence {(xk, yk)} generated by algorithm converges to (x*,y*)- 
saddle-point of L(x,y) on X×Y. 
  
Remark A4. Extragradient method applied to Lagrangian of linear programming problem converges with 
linear speed.  

 
 

A1.2.8. Perturbation Method for Saddle-Point Computation 
 

 
This section describes method for saddle point search [17-19] with non-cooperative game interpretation. 

Let L(x,y) finite convex-concave function on X×Y and XּRn, YּRm are closed, convex sets. 
Authors of the method has great justification in possibility to parallelize their method for saddle-point 
search of linear-programming Langrangian function (see [17]). In that case they can split entire saddle-
point search algorithm on separate optimization processes for each variable and constrain of linear 
programming problem. Authors of the method described in [17] introduce primal and dual regularizations 
of function L(x,y) in the following way: 

Let us define a non–cooperative game with two players: P and D. The objective of P is to 
minimize in the variables x∈X  the regularized primal function: 

 







 −−=

∈

2

2
),(),( yxLmaxyxP

Y
µρµ

µ
.                                                                          (A37) 

The objective of D is to maximize with respect to the variables y∈Y  the regularized dual function: 
 







 −−=

∈

2

2
),(),( xyLminyxD

X
ξρξ

ξ
                                                                              (A38) 

 
where ρ>0 is some parameter. 

A Nash equilibrium of the game defined as a point (x∗,y∗)∈X×Y  with: 
 

{ }XxyxPargminx ∈∈ :),( **  ,                                                                                        (A39) 

{ }YyyxPargmaxy ∈∈ :),( **   ,                                                                                       (A40) 
 

Define the proximal mappings µ(x,y) as the solution of (A37) and ξ(x,y) as the solution of the 
(A38).  

Introduce the error functions:  
 

 ( ) ( )µξ
µξ

−−−=
∂∈∂∈

yhminxgmaxyxE
xLhxLg yx

,,),(
),(),(

, 

( ) 22, yxyx −+−=∆ µξ , 
 
where (∂xL(x,y), ∂yL(x,µ)) - ξ=ξ(x,y),µ=µ(x,y). 
 

Proposition A3. For all x∈X and y∈Y, ρ∆(x,y)≤E(x,y)≤L(x,µ(x;y))-L(ξ(x,y),y). 
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Theorem A7. The following three statements are equivalent: 
1. (x∗,y∗) is a Nash equilibrium of the game (A37)–(A38); 

2. E(x∗,y∗)=0  

3. (x∗,y∗) is a saddle-point of L(x,y) on X×Y .  
 

A1.3. Algorithms for Finding a Saddle-Point 
 

According to theorem we can find Nash equilibrium of the game (A37)–(A38) to find saddle-point of L. 
Cone of feasible directions at x∈X is denoted by KX ( )x  and cone of feasible directions at y∈Y is denoted 

by KY ( )y . 

Initialization. Choose x0∈X, y0∈Y, γ∈ (0;2). Set k=0. 

Prediction. Calculate µk=µ(xk,yk)  and ξk= ξ(xk,yk)  . 

Stopping test. If Ek=E(xk,yk)=0 , then stop. 

Direction finding. Find subgradients Lx(xk,µk), Ly(ξk,yk) and calculate 

d
k
x =πC

k
x
 ( )-Lx(xk,µk)  

d
k
y =πC

k
y
 ( )Ly(ξk,yk)  

where Cx
k  and Cy

k  are closed convex cones and KX(xk)⊂Cx
k, KY(yk)⊂Cy

k . 

Stepsize calculation. Calculate 

2k

k
k

d

Eγτ = , 

k =where ( )k
y

k
x dd ,d . 

Step. Calculate next point 
 

( )k
x

k
X

k dxx τπ −=+1 , 
( )kkk dyy τπ −=+1

yY , 
k=k+1, 
 
go to Prediction. 
 

Theorem A8. Let set of saddle-points X*×Y* is not empty. Then algorithm generates a sequence 

 converges to a saddle-point of L on X×Y.  ( ){ }∞

=0, k
kk yx

A1.3.1. Method of Levels for Saddle-Points Search. 
 

This method belongs to a class of bundle methods [16]. These methods use information that was 
collected on  all steps of optimization process unlike many other methods that use information from one or 
two previous steps only.   

Lets describe the saddle-point search method for function defined on direct product of polytopes. 
Method is tailored for saddle-point search problem level method of minimizing convex function. Lets 
shortly describe it and show how it lead us to saddle-point search algorithm. 
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Method has one parameter λ∈(0,1) and denoted by Levλ. 
Given the problem: 
 
f(x) → min,   x∈G.                                                                                                      (A41) 
 

where G∈Rn-polytope with diameter D, f-convex and Lipschitz function on G. 
 
Method generates sequence of points xj , which accumulate information about function f and 

allows to build approximation of function f with increasing accuracy. 
Introduce piecewise-linear functions: 
 

[ ])()()()(
1 j

T
jjiji xfxxxfmaxxf ∂−+=

≤≤
                                                  (A42) 

 
where xj∈G -generated by algorithm points, ( )jxf∂  - subgradient in xj. 

On step number i method uses all information accumulated on previous steps. 
We have following properties: 
 
fi(x) ≤  f(x)  - low bound property, 
 
fi+1(x) ≥  fi(x)  - nondecreasing of low bounds property, 
 
fi(x) = f(x), 1≤ j≤ i . 
 
Note that problem is a linear programming problem: )(xfmin iGx i∈

 
min t 

f(x1) + (x – x1)T ∂f(x1) ≤ t, 

f(x2) + (x – x2)T ∂f(x2) ≤ t, 

f(xi) + (x – xi)T ∂f(xi) ≤ t, x∈G. 
 

Denote minimal value of this problem . And again we have: 
−
if

 
*ffi ≤

−
, where  f* is optimal value of (A41), 

−−
+ ≥ ii ff 1 . 

 
Record value achieved is: 
 

)(
1 jiji xfminf

≤≤
= , 

 
From ii fff ≤≤

−

* we have non-increasing error estimates: 
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iii ff −=∆
−

 

.1 ii ∆≤∆ +  
 

Then the next point xi+1 is calculated as projection of xi on ”level” set: 

( )[ ]iiii lxfGxxxargminx ≤∈−=+ ,, 2
1 , 

 
where li- is value of ”level”: 

 

iii fl ∆+=
−

λ , λ∈ ( )0,1  - is a parameter of algorithm. 

 
Algorithm stops when ∆i≤ε,  where ε>0 is solution accuracy for problem (A41). 

Record points ix such that ( ) ii fxf = is approximate solution for problem (A41). 
Method of levels for saddle-point search is method of minimizing of function: 

,),(  ,)()()( YXGyxzminyxzv ×=∈=→−= ϕψ                                                           (A43) 
 

where ϕ(y)and ψ(x) defined as in (A3)-(A4)  
 

               ϕ(y)=minx∈XL(x,y)  
             ψ(x)=maxy∈YL(x,y)  

and X and Y are polytopes. 

Optimal value of problem (A43) is zero and reached on saddle-point ν(x∗,y∗)=0 . 

Accuracy of solution of (A43) in point (x,y)∈G  is: 

[ ] 



 −+−=−=

∈∈
)()()()( )()(),( yymaxxminxyxyxv

YyXx
ϕϕψψϕψ . 

If ν(x∗,y∗)≤ε  then (x∗,y∗) called ε-solution of saddle-point problem. 

Lets we found points zj=(xj,yj)∈G, 1≤j≤i and calculated L(zj) and partial subgradients ∂Lx(zj) and 
partial supergradients ∂Ly(zj) 

Introduce functions: 

( ) ( ) ( )[ ]jx
T

jjjji zLxxzLmaxx ∂−+=
≤≤1

)(ψ ,                                                                           (A44) 

 
              ( ) ( ) ( )[ ]jy

T
jjjji zLyyzLmaxy ∂−+=

≤≤1
)(ϕ .                                                                           (A45) 

We have: 
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ψi(x)≤ψ(x)  

ϕi(y)≥ϕ(y)  

Function νi(x,y) = ψi(x) - ϕi(y) is lower bound for ν(x,y), but we have not equality νi(xi,yi)=ν(xi,yi)  

as it was in case of convex function minimization. So we’ll have point (xi,yi) and call it ”search point” and 

”approximation” point” (x∗
i ,y∗

i ) that will be build from previous search points. 

 

A1.3.2. Algorithm Lev
s
λ for Saddle-Point Search 

 
Initialization. Choose x1∈X, y1∈Y, ε>0,λ ∈ (0,1). Set i=1. 

Iteration 
Calculate L(zj), ∂Lx(zj), ∂Ly(zj). 
Build models ψi,ϕi,νi 

Solve linear programming problems: 
 

minx∈Xψi(x)  and find dual variables λj≥0. 

maxy∈Yϕi(y)  and find dual variables µj≥0. 

 
Calculate optimal value - ∆i of νi 

Calculation of approximation to saddle-point : 

z∗
i =(x∗

i ,y∗
i )  

x∗
i = ∑

j=1

i
 µjxj 

y∗
i = ∑

j=1

i
 λjyj 

Stopping test: 

If ∆i≤ε then z∗
i  is ε-solution 

Calculate next search point: 
Solve quadratic programming problem: 
 

( ) ( ) ( )( )iiiiii zGzzzyxz ∆−−≤∈−== +++ λν 1,, minarg, 111 , 
i=i+1 

goto Iteration. 
 
Stop criterion follows from theorem 
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Theorem A9.  

1. For method Levλ
S for all i have  v(zi

*)≤∆i. 

2.∀ε>0 method finds ε-solution (i.e. ν(z∗
i )≤ε)  on iteration K with 

estimate: 







≤ 2

22

)(
ε

λ DCcK , 
( ) ( )λλλ

λ
−−

=
21

2)( 2c , where D-diameter of G, C-Lipschitz 

constant of function L.  
 
This result proves that saddle point computation is polynomial: diameter D ~ 3 N  , where N is 

dimension of a space of variables. 
 

A1.3.3. Conditional ε–subgradient Method 
 

During computations in optimization algorithms we frequently solve subproblems inexactly (for 
example, in interior points algorithms). So we would like to have method that takes in account inexact 
solution of subproblems. 

Method described in [20] allows us to build x-component of saddle-point (x*, y*)∈X*×Y* by means 
of a conditional ε–subgradient algorithm, while the y-component is constructed by means of a weighted 
average of the subproblem solutions generated within the subgradient method. 

The following problem solved to find x-component:  
 

( )xmin
Xx

ψ
∈

                                                                                                             (A46) 

 where:  
 

    ψ(x)=maxy∈YL(x,y)                                                            (A47) 

 
Lets denote the set of solutions to the problem (A47) by Y(x). An ε–optimal solution, y~ , to the 

problem (A47) is defined by the following inequality 

 

L(x,y%)≥ψ(x)-ε                                                                                        (A48) 

y%∈Y, ε≥0. 
 

Let’s introduce some notations and facts, see [4],[20]: 

Let S ⊆Rn nonempty, closed, and convex set. 
The normal cone to S is  

 
( ){ }





∉∅
∈∈∀≤−∈

=
.,
,, ,0: 

:)(
Sx
SxSyxyzRz

xN
Tn

S  

 
Indicator function on S is 
 

( )




∉∞+
∈

=
.,
,,0

:
Sx
Sx

xIS  
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Subdifferential operator ∂IX of IX is equal to NX: 

 
XxxNxI XX ∈∀=∂ ),()( . 

 
γε(x) is called ε-subgradient of f at x (that is γε(x)  is an element of the ε-subdifferential ∂εf(x) of f at x) for 
ε≥0 if and only if 

 
( ) ( ) ( ) ( ) nT zxzxxfzf R∈∀−−+≥ ,εγ ε                                                             (A49) 

 
With ε=0 we get definition of a subgradient(element of the subdifferential). 
The following introduce the notion of conditional ε-subgradient, see [20]. 
For x∈X and γε(x)∈∂εf(x)  

 
                      ,                                                                                                 (A50) ( ) ( ) ( )xxxX νγγ εε +=:
                      ( ) ( )xNx X∈ν .                                                                                                               (A51) 
 

( )xX
εγ  is called as conditional ε-subgradient of f at x. 

Equivalent definition produced by substituition z∈Rn with z∈X in (A49): 
 

( ) ( ) ( ) ( ) Xzxzxxfzf TX ∈∀−−+≥ ,εγ ε . 
 
To calculate conditional ε-subgradient according to (50), (51) the following facts will be useful: 
 

Proposition A4 Let x∈X and y% is ε–optimal solution to the problem (A47). Then any subgradient γ%(x) of 
L(⋅,y%) at x is an ε-subgradient of ψ(x) at x.  
 
Proposition A5 Let ( ){ } ,...,1,,| mibxaxX ii

n =≤∈= R . 
Then  
 

( )( )






∉∅

∈








=≥=−=∈= ∑
=

.,

,,,...,1,0;0,;::)( 1

Xx

XxmiwbxawwavRvxN
m

i
iiiiii

n

X  

 
 

We will use the following divergent series step length rule in conditional ε-subgradient algorithm: 

 

αt>0,∀t,limt→∞αt=0, ∑
t=0

∞
 αt=∞, ∑

t=0

∞
 α

2
t <∞                                   (A52) 

 
We can use the following step length rule for example: 
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αt= 
1

a+bt, a≥0, b>0. 
 
At first we present method to solve problem (A46): 

 

 ( ), :2
1

tX
t

tt
xxx εγα ∂−=

+
 ,...1,0 , : 2

1
1 =








=

++ txx
t

X
t π                                              (A53) 

 
Where πX-projection operator on X. 

Let X∗ denote solution set for problem (A46). 
 

Theorem A10 [20]. Let {xt} is generated by method (A52)-(A53) applied to (A46). If R+ ∋  {ε}→ 0, the 

sequence {γε
X(xt)} is bounded, and if  then {x∑

∞

=

∞<
0t

tta ε t}  converges to an element of X*.  

Remark A5. If X is bounded then sequence {γε
X(xt)} is bounded. 

 
Now lets show how the y-component of saddle-point computed within ε-subgradient method 

(A46-A47): 
Let 

 

 At:= ∑
s=0

t-1
 αs                                                                                    (A54) 

 y$t:=A
-1
t  ∑

s=0

t-1
 αsy

s
εs

                                                                              (A55) 

In other words At is the accumulated step length up to iteration t and the weighted average of 
the inexact solutions of (A52-A53). 

tŷ

In [20] was shown that any accumulation point of the sequence { } together with the 

solution obtained from subgradient scheme forms a saddle-point of L. 

∞ŷ tŷ
∞x

Let’s denote distance from the point x to its projection on S:  
xyminSxdist

Sy
−=

∈
 ),( . 

( ) ( ,ˆ, xLyxL ≥ ∞∞∞Theorem A11.  ) ., Yyy ∈∀   { } 0 ))(,ˆ( →∞xYydist t . 
 

So for ( )∞∞ yx ˆ,  we have left-most inequlity from definition of saddle-point. 

Theorem A12. ( ) ( ) .,ˆ,ˆ, XxyxLyxL ∈∀≥ ∞∞∞   

 
So we have right-most inequality for ( )∞∞ yx ˆ,  from definition of saddle-point. 

And finally we have 

Theorem A13. ( )∞∞ yx ˆ,  solves (A46), ( ) { }{ } 0 ,ˆ, * →×∞ Yxyxdist tt .  
 
In [20] is not described stop criterion for conditional ε-subgradient method and this could be considered as 
a flaw of the method. We can propose to use stop criterion that arises from the estimate the duality gap: 
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If ∆<− )ˆ()( tt yx ϕψ  then STOP. 

 
This requires solving the problem: 

 

   ϕ(y$t)=minx∈XL(x,y$t) . 

 
To reduce the computation work we can propose to evaluate the stop criterion value not on each step 

of method. In [16] described other variants of conditional ε-subgradient algorithm for minimization of 
convex function. But convergence of to y-component of saddle-point for these variants is not proved. tŷ

The similar results about constructing y-component of saddle-point exist for ”exact” subgradient 
method; see for example [37]. In [37] also suggested stop criterion of the saddle-point algorithm arises in 
problem of ”topology optimization of sheets in contact”. 

A1.3.4. Interior-Point Method for a Special Class of Saddle-Point Problems 
 

In [21] described polynomial method for solving special class of saddle-point problem. Method 
use results of Nemirovski on self-concordant convex-concave functions [22]. 

Let Sn denotes the space of n×n symmetric matrices and Sn
+ denotes the space of n×n symmetric 

positive semidefinite matrices. 
Lets consider the following problem: 

 

                 
( )







 + Qxxxcminmax TT

xQc 2
1

,
                                                                                               (A56) 

                Ax≥b,                                                                                                                                    (A57)                                      
                 cL≤c≤cU,  QL≤Q≤QU.                                                                                                      (A58) 
 

where: 
 

A∈Rm+n, 
b∈Rm , 

c,cL,cU∈Rn,QL,QU∈Sn,Q∈S
n
+ . 

 
Denote 

X:={x|Ax≥b}, 

Y:={(c,Q)|cL≤c≤cU,QL≤Q≤QU,QL,QU∈Sn,Q∈S
n
+}  

y:=(c,Q) 

L(x,y):=cTx+ 
1
2xTQx  

 
We can rewrite (A56) as:  
 
maxy∈Yminx∈XL(x,y)                                                                                   (A59) 

 
Function L is quadratic by x and linear by y. 
X and Y are convex, closed sets and Y is bounded. 
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Assume that X is bounded. This assumption meets in most real life applications. This can be achieved 
by adding box constrains with ”Big M”:-M≤xi≤M. Solve (A59) by finding the saddle-point of L: 

 
L(x*,y)≤ L(x*,y*) ≤ L(x*,y), ∀x∈X,∀y∈Y                                                                (A60) 

 
We have convex-concave function L(x,y) defined on X×Y and saddle-point (x*,y*) of L(x,y) with 

equality: 

 

),(),(maxmin),(minmax ** yxLyxLyxL
YyXxXxYy

==
∈∈∈∈

                                       (A61) 

 
 
As usual we introduce functions (see (A3) -(A4) ) 

 
ϕ(y)=minx∈XL(x,y)  

 
ψ(x)=maxy∈YL(x,y)  
 

The value of duality gap will serve a measure of proximity to a saddle-point: 

 

[ ] 



 −+−=−=

∈∈
)()()()( )()(),( yymaxxminxyxyxv

YyXx
ϕϕψψϕψ .                        (A62) 

 

Let X0and Y0 denote the interiors of the sets X and Y, which we assume 
to be nonempty. Consider the following barriers functions for the sets X and Y: 

 

( )∑
=

∈∀−−=
m

i
i

XxbAxlogxF
1

0,)( , 

( ) ( ) (

( )

.

),( 

)(

0

1

1 11

Yy

QdetlogQQlog

cQlogcclogcclogyG

nji

L
ijij

n

j nji
j

U
ij

L
jj

n

j
j

U
j

∈∀

−−−

−−−−−−−=

∑

∑ ∑∑

≤≤≤

= ≤≤≤=

)

 

 
F(x) is a self-concordant barrier for X with parameter m and G(y) is a self-concordant barrier for Y 

with parameter n2+4n. 
For t≥0 consider the following saddle-barrier function: 
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Lt(x,y) := tL(x,y) + F(x) – G(y).                                                                                    (A63) 
 

 
Lt(x,y) -is a strictly convex-concave function. 
 
Lemma A1. For each t≥0 there exists a unique saddle-point (xt,yt) of the function Lt(x,y) in X0×Y0. 
  
The set of saddle-points for for different values of t defines the central path for saddle-point problem 
(A60): 

 
( ) ( ) ( ){ } ,  ,,0:, : yxLe point ofis a saddlyxtyxC ttttt ≥= .                                       (A64) 

 
The central path is the main tool of path-following algorithms, i.e., algorithms that try to reach a 

solution by generating iterates around the central path for progressively larger values of t. 
 

Lemma A2. For a point (xt,yt) ∈C the following inequality for the measure of proximity to saddle-point 
(A61) holds: 

( ) ( )
t

mnnyxv tt
++

≤
4,

2

. 

 
This lemma is motivation for developing an algorithm that follows the central path to solve the 

saddle-point problem. For points on the central path, the measure of proximity converges to zero as the 
parameter t is increased. 

It is often very hard to find points that are exactly on the central path. 
For (x,y)∈X×Y and well defined ∆-measure of proximity to the central path (see [21] for details) 

the following inequality holds: 

( ) ( )









++

∆
+

++
≤

mnnt
mnnyxv

4
14,

2

2

. 

Given (x$,y$)∈X×Y we define the following restriction functions: 
               
              ,                                                                                (A65) ( ) ( ) ( ) 0

ˆ ,ˆ, XxxFyxtLxLt
y ∈∀+=

              ,                                                                                 (A66) ( ) ( ) ( ) 0
ˆ ,,ˆ YyyGyxtLyLt
x ∈∀−=

( )xLt
ŷ  and  are (strongly) self-concordant functions in their domains. ( ))( ˆ yLt

x−
The magnitude of the progress made by a Newton step for minimizing a given convex function 

f(z) can serve as a measure of proximity to the minimizer of the function. 
Given a strictly convex function f(.) and a vector z in its domain, consider the following function: 

( ) ( )[ ] ( )zfzfzfzf T ∇∇∇=
−12)(:,η .                                                                          (A67) 

 
The quantity in the square root on the right-hand-side of equation above is the quadratic Taylor series 

approximation to the decrease of the function f by taking a full Newton step from point z. This quantity is 
called Newton decrement. In [22] Nemirovski considers a generalization of the Newton decrement for 
convex-concave functions. In our case it is: 

 
( ) ( ) ( )yLxLyxL t

x
t
yt ,,:,, ˆ

2
ˆ

2 −+= ηηη                                                                         (A68) 

 
where t>0 and (x,,y)∈X0×Y0. 
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We will use η(Lt,x,y)  as a measure of proximity to the central path C. This measure vanishes only on 

the central path.If we are close to the central path with respect to measure of proximity η(Lt,x,y) then 

we are close to a saddle-point according to the following.lemma: 
 

Lemma A.3 If (x̄,ȳ)∈ X×Y satisfies ( ) βη ≤yxLt ,, with β≤ 
1
2, then 

( ) ( )
t

mnn
mnn

yxyxv ++









++
+≤−=

4
4

61)()(,
2

2

βϕψ . 

 
Now we can describe the short step algorithm to find a saddle-point of the problem (A60). 

A1.3.5. An Interior-Point Algorithm 
 

This algorithm can be viewed as a specialization of the short-step algorithm proposed in [22]. The 

method in [38] updates the central path parameter t according to the formula tt 







+=+ θ

δ1 where θ is 

the parameter of the barrier function for the domain of the problem (n2+4n+m in our case) and δ≤0.001 in 
our case. Then, the method of [38] uses a single Newton step to find the new iterate satisfying proximity 
bound. 

In [38], Nemirovski develops an alternate method that can replace δ above with a larger constant 
such as 1, but requires an inner iteration procedure -the so-called saddle Newton method, which may take 
several, but a bounded number of steps to generate the next iterate. Our algorithm improve the constant δ to 
at least 0.1 from 0.01 but still use a single Newton step between parameter updates. 

The saddle-point algorithm 
 
Step 1. Initialization: 

 
Choose α and β that satisfy the relationship 

 

                γ:= 
13
10 ( ) ( )1+α β+ ( )α n2+4n+m <1, 

                β
γ
γγ

10
13

1
12 ≤

−
+

 

Find  t0>0 and (x0,,y0)∈X0×Y0 that satisfies ( ) βη ≤00 ,,
0

yxLt . 
Set k=0. 

Step 2. Iteration: 

 

While ( )







++









++
+< mnn

mnn
tk 4

4
611 2

2

β
ε

  do 

( ) kk ttSet α+=+ 1 1 , 

Take a full step of Newton method for function (A62) 
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( ) ( ) ( )[ ] ( )kktkktkkkk yxLyxLyxyx
kk

,,,,
11

12
11 ++

−

++ ∇−=  
 

Set k=k+1 
 

End while. 
 

Remark A6. 
mnn ++

=
4
1.0

2
α and β=0.1 can be chosen to satisfy the condition in the initialization 

step.  
Polynomial complexity for the algorithm given by following theorem: 
 

Theorem A14. The saddle-point algorithm finds a feasible point (x,y) with ν(x,y)≤ε in 







 ++ mnnlnO 41 2

ε
 iterations.  

Algorithm requires finding t0>0 and (x0,,y0)∈X0×Y0  that satisfies ( ) βη ≤00 ,,
0

yxLt . This can be 

done by approximately solving the analytic center problems over X and Y, in 

++ mn4


 nlnO 1 2

ε
 

time. This will give an approximation; say (x0,,y0) to the saddle point of the pure barrier function L- 0(x,y). 
Then, t0 can be chosen as the largest t satisfying 00 ,,

0t
yxL

a

. ( ) βη ≤
 

 
Appendix 2. SP-SVM and MOP RSVM 
 
As we already mentioned a very close setting to the feature selection problem was done by Bi [31] 

for multi-objective program (MOP). Let us briefly describe this work. 
Associating e ch feature xj with a scaling factor performs the feature selection  

sj: x =(x1,…,xM) → ( )MM sxsx ,...,11 . 
The master multi-objective programming (MMOP) formulation of the problem is following: 
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This is a very hard to find a Pareto-optimal solution of this problem. The RSVM setting of the problem 

is following: 
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Here W is no longer a variable, but a user-specified parameter. 
In [31] proposed the following two-step procedure of feature selection. 

 The first step focuses on improving the performance of the classification model by minimizing the 
empirical risk with a fixed VC dimension. By optimizing on s, the second step seeks a feature space, for 
which a smaller VC dimension can be possibly achieved with the empirical risk preserved. 

The optimization algorithm for feature selection is following: 
 
1. Initialize s0 with (1,…,1), W0 with appropriate value. 
2. Solve the dual formulation of RSVM with the fixed st-1 and Wt-1, 
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and compute the optimal bt, l
il

N

i
i

t
i

t
l xsyw ∑

=

=
1

λ , l=1,…,M, where λt is constructed by 

dividing the optimal solution λ~ of (A72) by 
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(see [2, 30]). Calculate the corresponding optimal objective value Et of Primal (A70). 

 
3. Substitute the wt and bt into the MMOP, and restrict the first objective to be no more 

than Et. Solve the resulting optimization problem: 
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to obtain st and Wt. 
 

4.  Determine if more iterations are needed, for instance, if either Et or Ht=RtWt is 
decreased, set t=t+1, and go to Step 2; otherwise, stop. 

 
This scheme does not guarantee to achieve a Pareto-optimal solution. In [31] proved only that both 
Et and Ht not increasing from iteration to iteration. 
 
The comparison of this work with our present one says that from one side the settings of [30, 31] 

give more possibilities to control VC dimension because it does not include a hardly estimated parameter 
C. From other side our approach is strict and has an exact polynomial algorithm for its solution. 
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