Modeling Highly Heterogeneous (Large) Data Sets:

Towards a Billion Models

Robert Grossman
University of Illinois at Chicago & Open Data Group
Traditional Statistics

- One small data set
- A few attributes
- Vector-valued data

Data Mining

- Few large data sets
- Many attributes
- Complex data
But Large Data Is Not Homogeneous

<table>
<thead>
<tr>
<th></th>
<th>Statistics</th>
<th>Large Data Today</th>
<th>Large, Highly Heterogeneous Data (Tomorrow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Small</td>
<td>Large</td>
<td>Large</td>
</tr>
<tr>
<td>Attributes</td>
<td>Few</td>
<td>Many</td>
<td>Many</td>
</tr>
<tr>
<td>Structure</td>
<td>Vector</td>
<td>Complex</td>
<td>Complex</td>
</tr>
<tr>
<td>Populations</td>
<td>One</td>
<td>Several</td>
<td>Many</td>
</tr>
</tbody>
</table>
Today, we can manage one billion feature vectors.

Our interest: one billion models.
Progress to Date

Single models
Manually segmented model, Ensembles of models
Machine segmented models (homogeneous)
Highly heterogeneous models

1 10 100 1000 10E4 10E5 10E6 10E9
Example 1 - 42,000 Models

- Is the traffic speed and volume today (Tuesday, May 15, 4:30 pm, no rain) different than the baseline model?
- Separate model for 7 days x 24 hours x 250 locations = 42,000 models

- 833 road sensors
- Weather data (images, xml)
- Text data about special events
GLR Change Detection Algorithms (Single Model)

- Sequence of events $x[1], x[2], x[3], \ldots$
- Question: is the observed distribution different than the baseline distribution?
- Use simple CUSUM & Generalized Likelihood Ratio (GLR) tests
- ... but use thousands of them
Build 10⁴+ Models

1. Build segmented models using multidimensional data cubes
2. For each distinct cube, estimate parameters for separate statistical model
3. Detect changes from baselines and send alerts in real time
Greedy Meaningful/Manageable Balancing (GMMB) Algorithm

- More alerts
- Alerts more meaningful
- To increase alerts, add breakpoint to split cubes, order by number of new alerts, & select one or more new breakpoints

- Fewer alerts
- Alerts more manageable
- To decrease alerts, remove breakpoint, order by number of decreased alerts, & select one or more breakpoints to remove
Example 2: Data Quality for Payment Systems

- 6000+ peak transactions per second.
Payments Data is Highly Heterogeneous

- Variation merchant to merchant
- Variation bank to bank
- Daily variation
- Variation season to season
Data Cubes of Models - Payments Systems

- Build separate model for each bank (c. 1000)
- Build separate model for each geographical region (6 regions)
- Build separate model for each different type of merchant (c. 800 types of merchants)
- For each distinct cube, establish separate baselines for each metric of interest (declines, etc.)
- Detect changes from baselines

Entity (bank, etc.)
Geospatial region
Type of Transaction

Modeling using Cubes of Models (MCM)

20,000+ separate baselines
Example 3 - Emergent Behavior Network Packet Data

- Data collected in real time from several different distributed sensors (Angle)
- Still investigating best dimensions for cube
- Build separate cluster model for each cell in cube
Angle Scoring Functions for Each Cube in Data Cube of Models

- Update features using new packets and evolve features
- Divide clusters into good (B or Blue), neutral, and bad (R or Red)
- Blue - score using good clusters
- Red - score using bad clusters
- Purple - score using both good and bad clusters

- Hard scoring - use max / min
 \[s(x) = \max_{k \in B} s_k(x) \]

- Soft scoring use sum
 \[s(x) = \sum_{k \in BUR} s_k(x) \]

- Scoring function for single cluster
 \[s_k(x) = \theta_k \frac{1}{\sigma_k} \exp \left(-\lambda \frac{\|x - \mu_k\|^2}{2\sigma_k^2} \right) \]
 \[\sum_{k} \theta_k = 1 \]
The Challenge

- This methodology can work quite well in practice.
- Develop some of the theory to guide this methodology and improve the methodology.
Other Applications

- George Church’s challenge individual predictive models for each human genome
 6.5 Billion humans x 6 Billion Base Pairs

- Consumer Marketing - large advertisers will see 1-3 Billion different consumers

- Network defense / cyberdefense - 4 billion IPv4 addresses; billions of users; billions+ of IPv6 addresses
What About the Data?

- Highway change detection data is available at highway.ncdm.uic.edu
- Angle network anomalies will be available

What About the Software?

- Augustus - Will be available from Source Forge
References