Audit Games

Anupam Datta
Carnegie Mellon University
February 2013
Repositories of Personal Information
Healthcare Privacy

Privacy Policy

Patient

Physician

Auditor

Hospital

Drug Company

Patient information

Patient information

Patient information
A Research Area

- **Formalize Privacy Policies**
 - Precise definitions of privacy concepts (restrictions on information flow)
 - Information used *only for a purpose*
 - All disclosure clauses in HIPAA & GLBA

- **Enforce Privacy Policies**
 - Audit and Accountability
 - Detect violations of policy
 - Identify agents to blame for policy violations
 - Resource allocation for inspections and punishments (economic considerations)

Project page: [Privacy, Audit and Accountability](#)
Play in Three Acts

1. Rational Adversary Setting
2. Byzantine Adversary Setting
3. Research Directions

[Blocki, Christin, Datta, Procaccia, Sinha; 2013]
Audit Game Model [BCDPS’13]

- If a violation is found, adversary is fined.
- Utility when target t_i is attacked
 - Defender: $p_i U_{a,D}(t_i) + (1 - p_i)U_{u,D}(t_i) - ax$
 - Adversary: $p_i (U_{a,A}(t_i) - x) + (1 - p_i)U_{u,A}(t_i)$

Price of punishment [Becker’68]
Stackelberg Equilibrium Concept

- Defender commits to a randomized resource allocation strategy
- Adversary plays best response to that strategy

- Appropriate equilibrium concept
 - Known defender strategy avoids security by obscurity
 - Predictable adversary response

- Goal
 - Compute optimal defender strategy
Related Work

- Security resource allocation games [Tambe et al. 2007-]
 - Computes Stackelberg equilibrium
 - Deployed systems for resource allocation for patrols at LAX airport, federal air marshals service; under evaluation by TSA, US coast guard

- Audit games generalize security resource allocation games with the punishment parameter
 - Computing Stackelberg equilibrium becomes more challenging
 - Applicable to similar problems
Computing Optimal Defender Strategy

Solve optimization problems P_i for all $i \in \{1, \ldots, n\}$ and pick the best solution

$$\max p_i \ U_{a,D}(t_i) + (1 - p_i)U_{u,D}(t_i) - ax$$

subject to

$$p_j(U_{a,A}(t_j) - x) + (1 - p_j)U_{u,A}(t_j) \leq$$

$$p_i (U_{a,A}(t_i) - x) + (1 - p_i)U_{u,A}(t_i)$$

$\forall j \in \{1, \ldots, n\}$

p_i's lie on the probability simplex

$0 \leq x \leq 1$

Adversary’s best response is attacking target t_i
Algorithmic Challenges

1. Quadratic constraints
 - $p_i x$ terms

2. Non-convex optimization problem
 - Constraints representable as $x^T A x + Bx + c \leq 0$
 - A is not positive semi-definite
Properties of Optimal Point

- Rewriting quadratic constraints
 \[p_j(-x - \Delta_j) + p_n(x + \Delta_n) + \delta_{j,n} \leq 0 \]
 where \(\Delta_j \geq 0 \)

\[\Delta_j = U_{u,A}(t_j) - U_{a,A}(t_j) \]
Overview of Algorithm

- Iterate over regions
- Solve sub-problems EQ\(_j\)
 - Set probabilities to zero for curves that lie above & make other constraints tight
- Pick best solution of all EQ\(_j\)
Solving Sub-problem EQ\(_j\)

1. \(p_j(-x - \Delta_j) + p_n(x + \Delta_n) + \delta_{j,n} = 0\)
 - Eliminate \(p_j\) to get an equation in \(p_n\) and \(x\) only

2. Express \(p_n\) as a function \(f(x)\)
 - Objective becomes a polynomial function of \(x\) only

3. Compute \(x\) where derivative of objective is zero & constraints are satisfied
 - Local maxima

4. Compute \(x\) values on the boundary
 - Found by finding intersection of \(p_n = f(x)\) with the boundaries
 - Other potential points of maxima

5. Take the maximum over all \(x\) values output by Steps 3, 4

Steps 3 & 4 require computing roots of polynomials
Computing Roots of Polynomials

- Using existing algorithms
 - Splitting circle method [Schonage 1982] can approximate irrational roots to precision K in time polynomial in K
 - *Steps 3 and 4 take imprecision into account*
 - LLL [Lenstra et al. 1982] can find rational roots exactly
Main Theorem

- The problem can be approximated to an additive ϵ factor in time $O(n^5 K + n^4 \log(1/\epsilon))$ using only the splitting circle method, where K is the bit precision of inputs.

- Using LLL the time is still polynomial $O(\max\{n^{13}K^3, n^5 K + n^4 \log(1/\epsilon)\})$, and if the solution is rational the exact solution is found.
Play in Three Acts

1. Rational Adversary Setting
2. Byzantine Adversary Setting
3. Research Directions

[Blocki, Christin, Datta, Sinha; CSF 2011]
Audit Model

Auditing budget: $3000/ cycle
Cost for one inspection: $100
Only 30 inspections per cycle
Employee incentives unknown

Access divided into 2 types

Reputation Loss from 1 violation (internal, external)

30 accesses
$500, $1000

70 accesses
$250, $500

100 accesses

Auditor

Sandra Bullock
Repeated Game Model for Audit

- Game model

- One audit cycle (round)

- Typical actions in one round
 - Emp action: (access, violate) = ([30,70], [2,4])
 - Org action: inspection = ([10,20])
Game Payoffs

- Organization’s payoff

 - Audit cost depends on the number of inspections
 - Reputation loss depends on the number of violations caught

- Employee’s payoff unknown
Audit Algorithm Choices

Consider 4 possible allocations of the available 30 inspections.

Weights

Choose allocation probabilistically based on weights.
Audit Algorithm Run

<table>
<thead>
<tr>
<th>No. of Access</th>
<th>Actual Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>70</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Int. Caught</th>
<th>Ext. Caught</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Loss:

- $1500
- $1250

Sandra Bullock
Property of Effective Audit Mechanism

- Audit mechanism should be comparable to best expert in hindsight
- Audit: Experts recommend resource allocations
Low Regret

- Low regret of \(s \) w.r.t. \(s_1 \) means \(s \) performs as well as \(s_1 \)

- Desirable property of an audit mechanism
 - Low regret w.r.t all strategies in a given set of strategies

 \[\text{regret} \to 0 \text{ as } T \to \infty \]

- Audit setting
 - Audit mechanism recommended resource allocation performs as well as best fixed resource allocation in hindsight
Challenges in Audit Setting

- **Sleeping experts**
 - Not all experts available in each audit round (e.g., [300,10] in Figure 1)

- **Imperfect information**
 - In each round, only one expert’s advice is followed and associated loss observed
 - Requires loss estimation for outcome for all other experts

![Figure 1. Feasible audit space, represented by the shaded area.](image)
Regret Minimizing Audits (RMA)

- New audit cycle starts.
 - Find AWAKE
 - Pick s in AWAKE with probability $D_t(s) \propto w_s$
 - Update weight* of strategies s in AWAKE
 - Estimate payoff vector Pay using $\text{Pay}(s)$
 - Violation caught; obtain payoff $\text{Pay}(s)$

- $w_s = 1$ for all strategies s

* $w_s \leftarrow w_s \cdot \gamma^{-\text{Pay}(s) + \gamma \sum_{s'} D_t(s') \text{Pay}(s')}$
Audit Algorithm Run

<table>
<thead>
<tr>
<th>No. of Access</th>
<th>Actual Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>70</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Int. Caught</th>
<th>Ext. Caught</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Observed Loss

- $2000
- $1500
- $1000
- $100

Estimated Loss

- $750
- $1250
- $1250
- $150

Updated weights

- 0.5
- 0.5
- 2.0
- 1.5

Learn from experience: weights updated using observed and estimated loss.
Guarantees of RMA

- With probability $1 - \epsilon$, RMA achieves the regret bound

$$2 \sqrt{\frac{2 \ln N}{T}} + \frac{2 \ln N}{T} + 2 \sqrt{\frac{2 \ln \left(\frac{4N}{\epsilon}\right)}{T}}$$

- N is the set of strategies
- T is the number of rounds
- All payoffs scaled to lie in $[0,1]$
Related Work

- **Weighted Majority Algorithm [LW89]:**
 - Average Regret: $O((\log N)/T)^{1/2}$
 - Defender cannot run this algorithm unless he observes the adversaries moves (perfect information setting)

- **Imperfect Information Setting [ACFS02]:**
 - Average Regret: $O(((N \log N)/T)^{1/2})$
 - Regret bound converges to 0 much slower

- Our regret bounds are of the same order as the perfect information setting assuming loss estimation function is *accurate* and *independent*
Play in Three Acts

1. Rational Adversary Setting
2. Byzantine Adversary Setting
3. Research Directions
Research Directions

- Augmenting model and algorithm
 - Repeated interaction
 - Multiple defender resources constrained by audit budget
 - Multiple heterogeneous targets attacked by adversary
 - Information flow violations
 - Combining rational and byzantine adversary model

- Acquiring parameters of model
 - Ponemon studies, Verizon data breach reports

- From risk management to privacy protection
 - Why should organizations invest in audits to protect privacy?
 - What public policy interventions are most effective in encouraging thorough audits (e.g., HHS audits, data breach notification law)?

Initial results in [BCDS’12]
A Research Area

- **Formalize Privacy Policies**
 - Precise definitions of privacy concepts (restrictions on information flow)
 - Information used *only for a purpose*
 - All disclosure clauses in HIPAA & GLBA

- **Enforce Privacy Policies**
 - Audit and Accountability
 - Detect violations of policy
 - Identify agents to blame for policy violations
 - Resource allocation for inspections and punishments (economic considerations)

Project page: [Privacy, Audit and Accountability](#)
Thanks!
Questions?
Proof of Property of Optimal Point

- Quadratic constraints
 \[p_n(x + \Delta_n) + \delta_{j,n} \leq p_j(x + \Delta_j) \quad \text{where } \Delta_j \geq 0 \]

- Fact 1: \(p_j \) is 0 or the \(j^{th} \) constraint is tight
- Fact 2a: if \(p_n(x + \Delta_n) + \delta_{j,n} \leq 0 \) then \(p_j \) is 0
 - \(p_j(x + \Delta_j) \geq 0 \), thus the constraint cannot be tight, so \(p_j \) is 0
- Fact 2b: if \(p_n(x + \Delta_n) + \delta_{j,n} > 0 \) then tight constr
 - \(p_j \) cannot be 0, so constraint has to be tight
Problem P_n

Fortunately, the problem P_n has another property that allows for efficient methods. Let us rewrite P_n in a more compact form. Let $\Delta_{D,i} = U_D^a(t_i) - U_D^u(t_i)$, $\Delta_i = U_A^u(t_i) - U_A^a(t_i)$ and $\delta_{i,j} = U_A^u(t_i) - U_A^u(t_j)$. $\Delta_{D,i}$ and Δ_i are always positive, and P_n reduces to:

$$\max_{p_i, x} \quad p_n \Delta_{D,n} + U_D^u(t_n) - ax,$$

subject to

$$\forall i \neq n. \quad p_i (-x - \Delta_i) + p_n (x + \Delta_n) + \delta_{i,n} \leq 0,$$

$$\forall i. \quad 0 \leq p_i \leq 1,$$

$$\sum_i p_i = 1,$$

$$0 \leq x \leq 1.$$
Problem $Q_{n,i}$

\[
\begin{align*}
\max_{x, p(1), \ldots, p(i), pn} & \quad p_n \Delta_{D,n} - ax, \\
\text{subject to} & \quad p_n (x + \Delta_n) + \delta_{(i), n} \geq 0, \\
& \quad \text{if } i \geq 2 \text{ then } p_n (x + \Delta_n) + \delta_{(i-1), n} < 0, \\
& \quad \forall j \geq i. \ p_n (x + \Delta_n) + \delta_{(j), n} = p(j)(x + \Delta_j), \\
& \quad \forall j > i. \ 0 < p(j) \leq 1, \\
& \quad 0 \leq p(i) \leq 1, \\
& \quad \sum_{k=i}^{n-1} p(k) = 1 - p_n, \\
& \quad 0 \leq p_n < 1, \\
& \quad 0 < x \leq 1.
\end{align*}
\]
Problem $R_{n,i}$

$$\max_{x,p_n} \quad p_n \Delta_{D,n} - ax,$$

subject to

$$p_n (x + \Delta_n) + \delta_{(i),n} \geq 0,$$

if $i \geq 2$ then

$$p_n (x + \Delta_n) + \delta_{(i-1),n} < 0,$$

$$p_n \left(1 + \sum_{j:i \leq j \leq n-1} \frac{x + \Delta_n}{x + \Delta_{(j)}}\right) = 1 - \sum_{j:i \leq j \leq n-1} \frac{\delta_{(j),n}}{x + \Delta_{(j)}},$$

$$0 \leq p_n < 1,$$

$$0 < x \leq 1.$$