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1 INTRODUCTION

Genes regulate the function of the cells in our body by interacting with each other through proteins, forming genetic pathways. High-throughput gene-expression micro-arrays allow the simultaneous measurement of the activity or inactivity of thousands of genes by measuring their expression, and they hold great promise for elucidating genetic pathways [1]. While Bayesian network inference is a commonly used method for inferring interactions between genes from gene-expression micro-array data, they do not directly infer differences in gene interactions between subsets of micro-array datasets (e.g., gene A’s expression is positively correlated with gene B’s expression in normal tissue, but the expression levels of the two genes are negatively correlated in cancer tissue). We present a novel computational method derived from Bayesian network inference for inferring differences in conditional relationships between subpopulations and its application to breast cancer data, resulting in new biological hypotheses about differences between two types of breast cancer.
2 BACKGROUND 

Bayesian network learning is a popular machine learning method for analyzing gene expression data because of the intuitive nature of the inferred networks. These networks consist of nodes corresponding to the genes and directed arcs between some of the nodes. Arcs between nodes identify inferred dependencies among genes, and the absence of an arc between two nodes can be used to infer conditional independences. Associated with each node is a conditional probability table that specifies the probabilities of values of the corresponding variable given all possible combinations of values of the parents of that node. An overview of Bayesian network learning is given in [2], and applications of Bayesian network learning to gene expression data are presented in [3] and [4]. 

3 Inferring difference networks 

The method for inferring significant differences in gene interactions between classes may be divided into three steps: inferring an initial Bayesian network, identifying interactions in the network that significantly differ between classes, and removing the insignificant edges. The significantly differing interactions are then presented visually to allow inspection of the inferred differences. These steps are detailed in the following paragraphs. 

As outlined in the previous paragraph, the first step in the method is to infer an initial Bayesian network. For the preliminary results discussed in this proposal, the freely available WEKA machine learning toolkit [5] was used to generate reference networks. WEKA has many options for learning Bayesian networks; settings instructing WEKA to use a hill-climbing search of possible structures with BDeu (Bayesian Direchlet-equivalent with uniform priors) as the scoring heuristic and to use a limit of three parents per node are liberal enough to provide many edges for use in the next step in the method.  

The second step in the method for inferring significant differences in gene interactions is to evaluate the statistical significance of the difference between classes of the conditional relationships between the values of parent nodes (genes) and their child nodes. That is, for each edge from a parent gene P to a child gene C, a p-value is estimated for the assertion, C is conditionally independent of the class given P, by constructing many random Q-versus-class​conditioned-on-P contingency tables from a Fisher-Yates distribution and then estimating from those tables the likelihood of the actual contingencies being the result of random noise.  

Once the p-values for all edges have been calculated, the values may be used to filter edges representing statistically insignificant differences: if this p-value is lower or equal to the desired level of significance, then P’s conditional relationship with C varies significantly from class to class; otherwise, the edge is omitted. This step requires that the values of the genes be discretized. For the results presented in this proposal, the expression values of the genes have been grouped into five ranges using equal-frequency discretization.  

4 Application to breast cancer promoter data 

Difference networks were inferred from a breast cancer promoter dataset, derived from micro-array gene expression data, to identify interactions among the promoters that differ significantly between normal breast tissue and the ERBB2 breast cancer subtype. The inferred difference network was then mapped back to the normal and ERBB2 subsets to produce a pair of graphs that will allow a visual comparison of the differences. The inferred graphs are presented in Figure 1. 
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Figure 1. Pair of graphs generated by applying our difference network tool to breast cancer promoter data. Red edges indicate negative correlations between promoters, and green edges indicate positive correlations. Thickened edges indicate edges relevant to a biologically significant hypothesis postulated from these graphs.
These graphs suggest a potentially significant interaction between zinc finger transcriptional networks that control proliferation and TGF-beta regulated networks. Specifically, there is a strong anti-correlation in the ERBB2 subtype suggesting that TGF-Beta signaling may antagonize signaling through ERBB2 pathways in breast cancer. Also, there is an interaction with E2F-1 suggesting anti-correlation with control of cell-cycle and proapoptosis and ZNF transcriptional networks. The thickened edges in Figure 1 indicate interactions in the graphs that are relevant to these findings.
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