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The Central Question

Can we view a Nash Equilibrium as a convergent 
point of a “sensible” learning process?

Few general results, short of exhaustive search.



Some Convergence Results
Extensive list of special cases

- zero sum

- 2 player, 2 action

- potential games

“Exhaustive search” results:

- Hypothesis Testing [Foster & Young]

- Distributed Search [Hart & MasColell]



Outline
Background on learning in games

Online Prediction:

- the calibration task

- Theorem 1: There exists a deterministic weakly calibrated 
algorithm.

Game Theory:

- Learning using the “public” algorithm

- Game Theory:  If players use the same weakly calibrated 
algorithm, the joint frequency of play converges into the 
set of convex combinations of NE.



A Learning Process
1. Players make predictions of other players using:

- the joint history of play

- private utility functions

2. Players then take best responses.

•
Fictitious play is the most well studied example

What constitutes “good” predictions?



Calibration
"Suppose in a long (conceptually infinite) 
sequence of weather forecasts, we look at all 
those days for which the forecast probability of 
precipitation was, say, close to some given value  
p  and  ...  determine the long run proportion  f  
of such days on which the forecast event (rain) 
in fact occurred.  ... if  f=p  the forecaster may 
be termed well calibrated." Dawid [1982]

not stringent condition: 0 1 0 1 0 1 0 ...



Is calibration always possible?
Yes, with private randomization [Foster & Vohra]

But how does the forecaster announce his 
predictions?

Theorem: [Foster & Vohra] If players make 
calibrated predictions in the learning process, 
then convergence is to correlated equilibria.
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The Online Prediction Setting

Finite Outcome Space {1, 2, ....,m}

Sequence of Outcomes X1,X2...  where Xt is 
of the form (0,0,1,0,0)

The empirical frequency at time t is

A forecasting method F maps histories to 
probability forecasts.  At time t,

1

T

T

!
t=1

Xt

ft = F(X1,X2, . . .Xt−1)



Calibration Error
          is the indicator function which is 1 iff ft 
is  -close to p, and 0 otherwise.

For a sequence X, the calibration error is 

This is an “internal” regret (directional).

F is calibrated if 

Deterministic F are not calibrated [Oakes; Dawid]

Randomized F can be [Foster & Vohra]

∀X , ∀p, RT(p,X)→ 0

RT(p,X) =
1

T

T

!
t=1

I{ ft ≈ p}(Xt− ft)

I{ ft ≈ p}
!
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“Weak” Calibration Error

Replace           with a continuous (bounded) 
“test function” w

For X, the weak calibration error w.r.t. w is 

Again, a notion of internal regret

F is weakly calibrated if 

Definition using weak convergence of measures 

I{ ft ≈ p}

∀X , ∀w, RT(w,X)→ 0

RT(w,X) =
1

T

T

!
t=1

w( ft)(Xt− ft)



A Deterministic Algorithm Exists

Theorem 1: There exists a deterministic, 
weakly calibrated F.

The proof is constructive.

How do we use this algorithm to calibrated 
in the standard sense?



Corollary: Randomized Rounding of F

Say deterministic F makes predictions:

0.8606, 0.2387, 0.5751, 0.40051 ...

Randomly round the forecast onto   -spaced 
grid {p}

Corollary 1: Almost surely, in the limit, 

F makes “public” predictions

!

|RT(p,X)| < 2!

∀X ∀p



The Algorithm: Forecast the Fixed Point

For a grid of points {p}, each point has associated 
‘vector’ error RT(p)

This defines a mapping: p --> p+RT(p)



The Algorithm: Forecast the Fixed Point

For a grid of points {p}, each point has associated 
‘vector’ error RT(p)

This defines a mapping: p --> p+RT(p)

Forecast any fixed point of this interpolated function



The Proof

Use Blackwell’s Approachability Theorem

“Simpler” proof than most

- geometric property satisfies approachability condition 

Take grid size to 0 (convergence rate exponential in dim)

Some comments:

- this generalizes to an internal regret algorithm for 
the online convex programming problem
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Game Theory: The Setting

Players:  1, 2, ... n

Action set for player i:  Ai

Action spaces:

Utility function for player i: 

If p is a distribution over A,  then p-i  is a 
distribution over A-i

ui : A→ [0,1]

A=!Aj and A−i =! j "=iA j



Definitions of Equilibrium
p is a Nash equilibrium if

1.  p is a product distribution

2. If ai has positive probability under p, 
then ai is a best response to p-i

3.

p is a correlated equilibrium without condition 
1 and a natural modification to 2.



A Learning Process
Predictions:

Players know joint history X1,X2, ... Xt-1 
where each 

Players make forecast ft which is a 

distribution over A-i

Actions:

Player i takes a best response to ft

Xk ∈ A



Calibration and Learning

Suppose players make calibrated predictions

Theorem: [Foster & Vohra] The frequency of 
empirical play converges into the set of 
correlated equilibria.

d
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T
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Xt,CE

)
→ 0



The “Public” Learning Process

Public Predictions:

At time t, the joint forecast is 

ft is a distribution over A

Players’ Actions:

Player i marginalizes to get (ft)-i 

Player i then takes “continuous”   -best 
response to (ft)-i (which is a mixed strategy)

Using randomized rounding is one scheme

ft = F(X1,X2, . . .Xt−1)

!



Interpretation of the Process

Players use the same algorithm (based on F).

Predictions are guaranteed to be calibrated, 
regardless of how the other players act.

Algorithm uses observable information and is 
uncoupled.

Additional ‘consistency’ in the predictions.



Theorem 2
Assuming:  

 F is any weakly calibrated

the best response functions slowly sharpen

Then:

The joint empirical frequency of play converges 
into the set of convex combinations, almost surely

(Merging) The play and predictions are often 
close to some Nash Equilibrium:

d
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T
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!
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Xt,Convex(NE)

)
→ 0



The Proof

Say f used “often”:

Independence: All players act independently conditioned 
on of f . Call this constant product play p.

Best Responses: All players take best responses to f.

Deterministic Calibration: f is calibrated -> f=p

- why we get NE not just CE



Convergence Rates and Practicality

Come to Dean’s Talk: 10:30

Doubly exponential in #players

What do we really need to check?

- much less, in general

- even less in structure games

We do really want to check ourselves on 
opponents decisions?


