DISTANCE BASED PROBABILISTIC CLUSTERING OF DATA

CEM IYIGUN AND ADI BEN-ISRAEL

The problem is to partition a given data set $\mathcal{D}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right\} \subset$ \mathbb{R}^{n}, into clusters $\left\{\mathcal{C}_{i}, \ldots, \mathcal{C}_{m}\right\}$, where the number m of clusters is either given, or to be determined by an optimality criterion.

Clusters consist of similar points, and are themselves dissimilar, where similarity is in a sense of a distance $d(\cdot, \cdot)$ on \mathbb{R}^{n}.

With a cluster \mathcal{C}_{i}, we associate a center \mathbf{c}_{i}, and for any data point $\mathrm{x} \in \mathcal{D}$ we then compute:

- a distance $d\left(\mathbf{x}, \mathbf{c}_{i}\right)$, denoted by $d_{i}(\mathbf{x})$, and
- a probability $p_{i}(\mathbf{x})$ of membership in \mathcal{C}_{i}.

We assume throughout that for all \mathbf{x},

$$
\begin{equation*}
p_{i}(\mathbf{x}) d_{i}(\mathbf{x})=\text { constant, depending on } \mathbf{x}, \quad \text { for } i=1, \ldots, m, \tag{1}
\end{equation*}
$$

making membership in nearby clusters more probable. Since probabilities add to 1 , assumption (1) implies

$$
\begin{equation*}
p_{i}(\mathbf{x})=\frac{\prod_{j \neq i} d_{j}(\mathbf{x})}{\sum_{k=1}^{m} \prod_{j \neq k} d_{j}(\mathbf{x})}, i=1, \ldots, m \tag{2}
\end{equation*}
$$

in particular, for $m=2$,

$$
\begin{equation*}
p_{1}(\mathbf{x})=\frac{d_{2}(\mathbf{x})}{d_{1}(\mathbf{x})+d_{2}(\mathbf{x})}, p_{2}(\mathbf{x})=\frac{d_{1}(\mathbf{x})}{d_{1}(\mathbf{x})+d_{2}(\mathbf{x})} . \tag{3}
\end{equation*}
$$

We present a new clustering algorithm that iterates on centers, distances and probabilities, compare it with existing methods, and illustrate its advantages.

Keywords: Distance based clustering, probabilistic clustering.

E-mail address: \{iyigun, bisrael\}@rutcor.rutgers.edu
RUTCOR-Rutgers Center for Operations Research, Rutgers University, 640 Bartholomew Rd., Piscataway, NJ 08854-8003, USA

