Computing Largest Correcting Codes and Their Estimates Using Optimization on Specially Constructed Graphs

Sergiy Butenko

Department of Industrial Engineering
Texas A&M University
College Station, TX 77843

Joint work with P. Pardalos, I. Sergienko, V. Shylo, and P. Stetsyuk
Outline

- Introduction
- Maximum clique/independent set problems
- Error-correcting codes
- Lower bound for codes correcting one error on the Z-channel
- Conclusion
Introduction

Definitions:

\[G = (V, E) \] is a simple undirected graph,
\[V = \{1, 2, \ldots, n\} . \]

\[\overline{G} = (V, \overline{E}) \], is the complement graph of \[G = (V, E) \],
where \[\overline{E} = \{(i, j) \mid i, j \in V, i \neq j \text{ and } (i, j) \notin E\} . \]

For \(S \subseteq V \), \[G(S) = (S, E \cap S \times S) \] the subgraph induced by \(S \).
Example:

\[V = \{1, 2, 3, 4, 5\} \]
\[E = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (3,5), (4,5)\} \]
$S = \{1, 3, 5\}$
$S = \{1, 3, 5\}$

$G(S):$
\[S = \{1, 3, 5\} \]

\[G(S) : \]
Introduction

A subset $I \subseteq V$ is called an *independent set* (stable set, vertex packing) if $G(I)$ has no edges.

A subset $C \subseteq V$ is called a *clique* if $G(C)$ is complete, i.e. it has all possible edges.

An independent set (clique) is said to be

- *maximal*, if it is not a subset of any larger independent set (clique);
- *maximum*, if there is no larger independent set (clique) in the graph.
Example:

A maximal clique: \{3, 4, 5\}

The maximum clique: \{1, 2, 3, 4\}
A maximal clique: \(\{3, 4, 5\} \)
Introduction

The maximum clique:
\{1, 2, 3, 4\}
Introduction

\(\alpha(G) \) – the \textit{independence (stability) number} of \(G \).
\(\omega(G) \) – the \textit{clique number} of \(G \).

\(VC \subseteq V \) is a \textit{vertex cover} if every edge has at least one endpoint in \(VC \).

\[I \text{ is a maximum independent set of } G \]
\[\Updownarrow \]
\[I \text{ is a maximum clique of } \overline{G} \]
\[\Updownarrow \]

\[V \setminus I \text{ is a minimum vertex cover of } G. \]

MC, MIS and MVC problems are \textit{NP-hard}
Error-correcting Codes

Given:

Set B^n of all binary vectors of length n;
For $u \in B^n$ denote by

$$F_e(u) = \left\{ v : u \xrightarrow{\text{error } e} v \right\}$$

A subset $C \subseteq B^n$ is said to be an e-correcting code if

$$F_e(u) \cap F_e(v) = \emptyset \text{ for all } u, v \in C, u \neq v.$$

Find:

The largest correcting code.
Error-correcting Codes

Example: Single Deletion

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Error-correcting Codes

Example: Single Deletion

\[
\begin{array}{c}
\begin{array}{c}
X \\
0 \\
1 \\
0 \\
\end{array} \\
\begin{array}{c}
0 \\
1 \\
0 \\
\end{array} \\
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
0 \\
1 \\
0 \\
\end{array} \\
\end{array}
\]
Error-correcting Codes

Example: Single Deletion

\[
\begin{array}{c|c|c}
X & 0 & 1 \\
0 & & \\
1 & & \\
0 & & \\
\end{array}
\xrightarrow{	ext{}}

\begin{array}{c|c|c}
 & 0 & 1 \\
0 & & \\
1 & & \\
0 & & \\
\end{array}
\]
We construct the following graph $G_n = (V_n, E_n^{(e)})$:

- $V_n = B^n$;
- $(u, v) \in E_n^{(e)}$ if and only if $u \neq v$ and

\[F_e(u) \cap F_e(v) \neq \emptyset. \]

Then a correcting code corresponds to an independent set in G_n. Hence, the largest e-correcting code can be found by solving the maximum independent set problem in the considered graph.
Error-correcting Codes

- Single-Deletion-Correcting Codes (1dc);
- Two-Deletion-Correcting Codes (2dc);
- Codes For Correcting a Single Transposition, Excluding the End-Around Transposition (1tc);
- Codes For Correcting a Single Transposition, Including the End-Around Transposition (1et);
- Codes For Correcting One Error on the Z-Channel (1zc).

(Neil Sloane’s webpage)
Error-correcting Codes

- **Preprocessing**: Simplicial vertices are removed and connected components are considered separately.

- **Clique Partitioning**: We partition the set of vertices V of G as follows:

$$ V = \bigcup_{i=1}^{k} C_i, $$

where C_i - cliques such that $C_i \cap C_j = \emptyset$, $i \neq j$.
An upper bound:

\[O_G(G) = \max \sum_{i=1}^{n} x_i \]

s. t. \[\sum_{i \in C_j} x_i \leq 1, \ j = 1, \ldots, m \]

\[x \geq 0. \]

where \(C_j \in C \) is a maximal clique, \(C \) - a set of maximal cliques, \(|C| = m \).
Branch-and-Bound algorithm

- **Branching**: Based on the fact that the number of vertices from a clique that can be included in an independent set is always equal to 0 or 1.

- **Bounding**: We use a heuristic solution as a lower bound and $O_C(G)$ as an upper bound.
Exact Solutions Found.

| Graph | $|V|$ | $|E|$ | $\alpha(G)$ |
|---------|-----|-------|-------------|
| 1dc512 | 512 | 9727 | 52 |
| 2dc512 | 512 | 54895 | 11 |
| ltc128 | 128 | 512 | 38 |
| ltc256 | 256 | 1312 | 63 |
| ltc512 | 512 | 3264 | 110 |
| let128 | 128 | 672 | 28 |
| let256 | 256 | 1664 | 50 |
| let512 | 512 | 4032 | 100 |
One Error on the Z-Channel

A scheme of the Z-channel
One Error on the Z-Channel

<table>
<thead>
<tr>
<th>n</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>9</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>112</td>
<td>117</td>
</tr>
<tr>
<td>11</td>
<td>198</td>
<td>210</td>
</tr>
<tr>
<td>12</td>
<td>379*</td>
<td>410</td>
</tr>
</tbody>
</table>

One Error on the Z-Channel

The asymmetric distance \(d_A(x, y) \) between vectors \(x, y \in B^n \) is defined as follows:

\[
d_A(x, y) = \max\{N(x, y), N(y, x)\},
\]

where \(N(x, y) = |\{i : (x_i = 0) \land (y_i = 1)\}| \). It is related to the Hamming distance

\[
d_H(x, y) = \sum_{i=1}^{n} |x_i - y_i| = N(x, y) + N(y, x)
\]

by the expression

\[
2d_A(x, y) = d_H(x, y) + |w(x) - w(y)|
\]
One Error on the Z-Channel

The minimum asymmetric distance Δ for a code $C \subset B^n$ is defined as

$$\Delta = \min \{ d_A(x, y) | x, y \in C, x \neq y \}.$$

Rao and Chawla (1975): A code C with the minimum asymmetric distance Δ can correct at most $(\Delta - 1)$ asymmetric errors.

We consider $\Delta = 2$.
The partitioning method (Van Pul and Etzion, 1989)

\[V(n) = \bigcup_{i=1}^{m} I_i, \ I_i \text{ is an independent set, } I_i \cap I_j = \emptyset, \ i \neq j. \]

\[\Pi(n) = (I_1, I_2, \ldots, I_m). \]

The index vector of partition \(\Pi(n) \):

\[\pi(n) = (|I_1|, |I_2|, \ldots, |I_m|), \]

We assume that \(|I_1| \geq |I_2| \geq \ldots \geq |I_m| \).
One Error on the Z-Channel

Constant weight codes of weight w
Construct a graph $G(n, w)$

- $\binom{n}{w}$ vertices
- x and y are adjacent iff $d_H(x, y) < 4$
- an independent set partition

$$
\Pi(n, w) = (I_1^w, I_2^w, \ldots, I_m^w)
$$

(each ind. set is a subcode with minimum Hamming distance 4)
The direct product $\Pi(n_1) \times \Pi(n_2, w)$ of a partition of asymmetric codes $\Pi(n_1) = (I_1, I_2, \ldots, I_{m_1})$ and a partition of constant weight codes $\Pi(n_2, w) = (I_1^w, I_2^w, \ldots, I_{m_2}^w)$ is the set of vectors

$$C = \{(u, v) : u \in I_i, v \in I_i^w, 1 \leq i \leq m\},$$

where $m = \min\{m_1, m_2\}$.

Etzion and Östergard (1998): C is a code of length $n = n_1 + n_2$ with minimum asymmetric distance 2, i.e. a code correcting one error on the Z-channel of length $n = n_1 + n_2$.
One Error on the Z-Channel

A procedure for finding a code C of length n and minimum asymmetric distance 2:

1. Choose n_1 and n_2 such that $n_1 + n_2 = n$.
2. Choose $\epsilon = 0$ or 1.
3. Compute $\Pi(n_1)$ and $\Pi(n_2, 2i + \epsilon)$, $i = 0, \ldots, \lfloor n_2/2 \rfloor$.
4. Set

$$C = \bigcup_{i=0}^{\lfloor n_2/2 \rfloor} (\Pi(n_1) \times \Pi(n_2, 2i + \epsilon)).$$
One Error on the Z-Channel

INPUT: $G = (V, E)$;
OUTPUT: I_1, I_2, \ldots, I_m.

0. i=0;
1. while $G \neq \emptyset$
 for $j = 1$ to k
 Find a maximal independent set IS_j;
 if $|IS_j| < |IS_{j-1}|$ break
 end

Construct graph G;
Find a maximal independent set $MIS = \{IS_{i_1}, \ldots, IS_{i_p}\}$ of G;
$I_{i+q} = IS_{i_q}, q = 1, \ldots, p$;
$G = G \setminus \bigcup_{q=1}^{p} G(I_{i+q}); i = i + p$;
One Error on the Z-Channel

- $\Pi(n, 0)$ consists of one (zero) codeword,
- $\Pi(n, 1)$ consists of n codes of size 1,
- $\Pi(n, 2)$ consists of $n - 1$ codes of size $n/2$ for even n,
- Index vectors of $\Pi(n, w)$ and $\Pi(n, n - w)$ are equal;
One Error on the Z-Channel

Partitions of asymmetric codes found.

<table>
<thead>
<tr>
<th>n</th>
<th>#</th>
<th>Partition index vector</th>
<th>Norm</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>36, 34, 34, 33, 30, 29, 26, 25, 9</td>
<td>7820</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>62, 62, 62, 61, 58, 56, 53, 46, 29, 18, 5</td>
<td>27868</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>62, 62, 62, 61, 58, 56, 53, 43, 32, 16, 6</td>
<td>27850</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>62, 62, 62, 61, 58, 56, 52, 46, 31, 17, 5</td>
<td>27848</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>62, 62, 62, 62, 58, 56, 52, 43, 33, 17, 5</td>
<td>27832</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>62, 62, 62, 62, 58, 56, 54, 42, 31, 15, 8</td>
<td>27806</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>112, 110, 110, 109, 105, 100, 99, 88, 75, 59, 37, 16, 4</td>
<td>97942</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>112, 110, 110, 109, 105, 101, 96, 87, 77, 60, 38, 15, 4</td>
<td>97850</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>112, 110, 110, 108, 105, 100, 96, 88, 74, 65, 38, 17, 1</td>
<td>97828</td>
<td>13</td>
</tr>
</tbody>
</table>
One Error on the Z-Channel

Partitions of constant weight codes obtained

<table>
<thead>
<tr>
<th>k</th>
<th>w</th>
<th>Partition index-vector</th>
<th>Norm</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
<td>30, 30, 30, 30, 26, 25, 22, 15, 2</td>
<td>5614</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>51, 51, 51, 51, 49, 48, 42, 42, 37, 23, 2</td>
<td>22843</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>51, 51, 51, 51, 49, 48, 45, 39, 36, 22, 4</td>
<td>22755</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>51, 51, 51, 51, 49, 48, 45, 41, 32, 22, 6</td>
<td>22663</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>132, 132, 120, 120, 110, 94, 90, 76, 36, 14</td>
<td>99952</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>91, 91, 88, 87, 84, 82, 81, 79, 76, 73, 66, 54, 38, 11</td>
<td>78399</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>91, 90, 88, 85, 84, 81, 79, 76, 72, 67, 59, 34, 11, 1</td>
<td>78305</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>278, 273, 265, 257, 250, 231, 229, 219, 211, 203, 184, 156, 127, 81, 35, 4</td>
<td>672203</td>
<td>16</td>
</tr>
</tbody>
</table>
One Error on the Z-Channel

Example: \(n = 18, \ n_1 = 8, \ n_2 = 10. \)

\[
\Pi(8) = \{36, 34, 34, 33, 30, 29, 26, 25, 9\}; \\
\Pi(10, 4) = \{30, 30, 30, 30, 26, 25, 22, 15, 2\}.
\]

- \(|\Pi(8) \times \Pi(10, 0)| = |\Pi(8) \times \Pi(10, 10)| = 36 \cdot 1 = 36; |
- \(|\Pi(8) \times \Pi(10, 2)| = |\Pi(8) \times \Pi(10, 8)| = 256 \cdot 5 = 1280; |
- \(|\Pi(8) \times \Pi(10, 4)| = |\Pi(8) \times \Pi(10, 6)| = \\
 36 \cdot 30 + 34 \cdot 30 + 34 \cdot 30 + 33 \cdot 30 + 30 \cdot 26 + 29 \cdot 25 + 26 \cdot 22 + 25 \cdot 15 + 9 \cdot 2 = 6580; |
- The total is \(2(36 + 1280 + 6580) = 15792 \) codewords.
One Error on the Z-Channel

Improved lower bounds. Previous results by:
(a)-Etzion (1991); (b)- Etzion and Östergard (1998)

<table>
<thead>
<tr>
<th>n</th>
<th>new</th>
<th>previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>15792</td>
<td>15762(a)</td>
</tr>
<tr>
<td>19</td>
<td>29478</td>
<td>29334(b)</td>
</tr>
<tr>
<td>20</td>
<td>56196</td>
<td>56144(b)</td>
</tr>
<tr>
<td>21</td>
<td>107862</td>
<td>107648(b)</td>
</tr>
<tr>
<td>22</td>
<td>202130</td>
<td>201508(b)</td>
</tr>
<tr>
<td>24</td>
<td>678860</td>
<td>678098(b)</td>
</tr>
</tbody>
</table>
Conclusion

- Improved lower bounds and exact solutions for the size of largest error-correcting codes were obtained.
- Structural properties (automorphisms, ...) of the considered graphs can be utilized more efficiently to reduce problem size.
- We used computational approach. Can the problem be solved analytically?