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Abstract

We present an approach that extends the Bentley-
Ottmann sweep-line algorithm [3] to the exact com-
putation of the topology of arrangements induced by
non-singular algebraic curves of arbitrary degrees.
Algebraic curves of degree greater than 1 are diffi-
cult to handle in case one is interested in exact and
efficient solutions. In general, the coordinates of in-
tersection points of two curves are not rational but
algebraic numbers and this fact has a great negative
impact on the efficiency of algorithms coping with
them. The most serious problem when computing
arrangements of non-singular algebraic curves turns
out be the detection and location of tangential inter-
section points of two curves. The main contribution
of this paper is a solution to this problem, using only
rational arithmetic. We do this by extending the con-
cept of Jacobi curves introduced in [12]. Our algo-
rithm is output-sensitive in the sense that the alge-
braic effort we need for sweeping a tangential inter-
section point depends on its multiplicity.

1 Introduction

Computing arrangements of curves is one of the fun-
damental problems in computational geometry as
well as in algebraic geometry. For arrangements of
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lines defined by rational numbers all computations
can be done over the field of rational numbers avoid-
ing numerical errors and leading to exact mathemat-
ical results.

As soon as higher degree algebraic curves are con-
sidered, instead of linear ones, things become more
difficult. In general, the intersection points of two
planar curves defined by rational polynomials have
irrational coordinates. That means instead of ra-
tional numbers one now has to deal with algebraic
numbers. One way to overcome this difficulty is
to develop algorithms that use floating point arith-
metic. These algorithms are quite fast but in degen-
erate situations they can lead to completely wrong
results because of approximation errors, rather than
just slightly inaccurate outputs. Assume that for two
planar curves one is interested in the number of in-
tersection points. If the curves have tangential inter-
section points, the slightest inaccuracy can lead to a
wrong output.
A second approach besides using floating point arith-
metic is to use exact algebraic computation methods
like the use of the gap theorem [5] or multivariate
Sturm sequences [17]. Then of course the results are
correct, but the algorithms in general are very slow.

We consider arrangements of non-singular curves in
the real plane defined by rational polynomials. Al-
though the non-singularity assumption is a strong
restriction on the curves we consider, this class of
curves is worthwile to be studied because of the gen-
eral nature of the main problem that has to be solved.
Two algebraic curves can have tangential intersec-
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tions and it is inevitable to determine them precisely
in the case we are interested in exact computation.
As a main tool for solving this problem we will in-
troduce generalized Jacobi curves, for more details
consider [24]. Our resulting algorithm computes the
exact topology using only rational arithmetic. It is
output-sensitive in the sense that the algebraic degree
of the Jacobi curve that is constructed to locate a tan-
gential intersection point depends on its multiplicity.

2 Previous work

As mentioned, methods for the calculation of ar-
rangements of algebraic curves are an important
area of research in computational geometry. For
an overview consider the articles of Halperin [14]
and Agarwal and Sharir [1]. A great focus is on
arrangements of linear objects. Algorithms coping
with linear primitives can be implemented using ra-
tional arithmetic, leading to exact mathematical re-
sults in any case. For fast filtered implementations
see for example the ones in LEDA [16] and CGAL
[11]. There are also some geometric methods dealing
with arbitrary curves, see for example [18], [8], [22],
[2], [19]. But all of them neglect the problem of ex-
act computation in the way that they are based on an
idealized real arithmetic provided by the real RAM
model of computation [20]. The assumption is that
all, even irrational, numbers are representable and
that one can deal with them in constant time. This
postulate is not in accordance with real computers.

Recently the exact computation of arrangements of
non-linear objects has come into the focus of re-
search. Wein [23] extended the CGAL implemen-
tation of planar maps to conic arcs. Berberich et
al. [4] made a similar approach for conic arcs
based on the improved LEDA [16] implementation
of the Bentley-Ottmann sweep-line algorithm [3].
For conic arcs the problem of tangential intersection
points is not serious because the coordinates of every
such point are one-root expressions of rational num-
bers. Eigenwillig et al. [10] extended the sweep-line
approach to cubic arcs. All tangential intersection
points in the arrangements of cubic arcs either have
coordinates that are one-root expressions or they are
of multiplicity 2 and therefore can be solved using
the Jacobi curve introduced in [12].

Arrangements of quadric surfaces in IR3 are consid-
ered by Wolpert [24] and Dupont et al. [9]. By pro-
jection the first author reduces the spatial problem to
the one of computing planar arrangements of alge-
braic curves of degree at most 4. The second authors
directly work in space determining a parameteriza-
tion for the intersection curve of two arbitrary im-
plicit quadrics.

For computing planar arrangements of arbitrary pla-
nar curves very little is known. An exact approach
using rational arithmetic to compute the topological
configuration of a single curve is done by Sakkalis
[21]. For computing arrangements of curves we are
also interested in intersection points of two or more
curves. Of course we could interpret these points
as singular points of the curve that is the union of
both. But the approach of Sakkalis for determining
singular points with the help of negative polynomial
remainder sequences is not very efficient, at least if
singular points occur frequently.
MAPC [15] is a library for exact computation and
manipulation of algebraic points. It includes a pack-
age for determining arrangements of planar curves.
For degenerate situations like tangential intersections
the use of the gap theorem [5] or multivariate Sturm
sequences [17] is proposed. Both methods, like the
one of Sakkalis, are not efficient.

3 Notation

The objects we consider and manipulate in our work
are non-singular algebraic curves represented by ra-
tional polynomials. We define an algebraic curve in
the following way: Let f be a polynomial in Q

�
x � y � .

We set ZERO � f � : ����� α � β �
	 IR2 � f � α � β ��� 0  and
call ZERO � f � the algebraic curve defined by f . If
the context is unambiguous, we will often identify
the defining polynomial of an algebraic curve with
its zero set.

For an algebraic curve f we define its gradient vector
to be ∇ f : ��� fx � fy ��	�� Q

�
x � y ��� 2 with fx : � ∂ f

∂x . We as-
sume the set of input curves to be non-singular, that
means for every point � α � β ��	 IR2 with f � α � β �
� 0
we have � ∇ f ��� α � β ����� fx � α � β ��� fy � α � β �������� 0 � 0 � . A
point � α � β � with � ∇ f ��� α � β ����� 0 � 0 � we would call
singular. The geometric interpretation is that for ev-
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ery point � α � β � of f there exists a unique tangent line
to the curve f . This tangent line is perpendicular to
� ∇ f ��� α � β � .
From now on we assume that all curves we consider
are non-singular.

We call a point � α � β � 	 IR2 of f extreme if fy � α � β ���
0. Extreme points have a vertical tangent. A point
� α � β � 	 IR2 of f is named a flex if the curvature of
f becomes zero in � α � β � : 0 � � fxx f 2

y
� 2 fx fy fxy

�

fyy f 2
x ��� α � β � .

Two curves f and g have a disjoint factorization if
they only share a common constant factor. With-
out loss of generality we assume that this is the
case for every pair of curves f and g we consider
during our computation. Disjoint factorization can
be easily tested and established by a bivariate gcd-
computation.

For two curves f and g a point � α � β � in the real plane
is called an intersection point if it lies on f as well as
on g. It is called a tangential intersection point of f
and g if additionally the two gradient vectors are lin-
early dependend: � fxgy

� fygx ��� α � β ��� 0. Otherwise
we speak of a transversal intersection point.

Last but not least we will name some properties of
curves that are, unlike the previous definitions, not
intrinsic to the geometry of the curves but depend on
our chosen coordinate system.

We call a single curve f � fn � x ��� yn � fn � 1 � x ��� yn � 1 �
����� � f0 � x � 	 Q

�
x � y � generally aligned if fn � x � �

constant �� 0, in which case f has no vertical asymp-
totes. Two curves f and g are termed to be in gen-
eral relation if every two common roots � α1 � β1 � ��
� α2 � β2 � 	 C2 of f and of g have different x-values
α1 �� α2.

We say that two pairs of curves � f1 � g1 � and � f2 � g2 �
are separate if

1. either there are non-zero constants c1 � c2 with
f1 � c1 � f2 and g1 � c2 � g2

2. or the x-values of the complex roots of f1 and g1

differ pairwise from the x-values of the complex
roots of f2 and g2.

Finally we call two curves f and g well-behaved if

1. f and g are both generally aligned,

2. f and g are in general relation and

3. the pairs of curves � f � g � , � f � fy � , and � g � gy � are
pairwise separate.

We will shortly give an idea of what well-
behavedness of two curves means. Let � α � β � be
an intersection point of two curves f and g. We
first consider the case g � fy. If f and fy are well-
behaved, there exists a vertical stripe a � x � b with
a 	 α 	 b such that � α � β � is the only extreme point
of f inside the stripe and the stripe contains no ex-
treme point of fy (and no singular point of fy). Espe-
cially this means that flexes of f do not have a verti-
cal tangent (Figure 1).
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y fy
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ff y

α

f

f

a b αa bα

f

a bα

f

a b

����
��

���� ����
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Figure 1: In the first picture the curves f and fy are
well-behaved, in the following three pictures they are
not.

Next consider the case that neither f nor g is a con-
stant multiple of the partial derivative of the other:
there are no constants c1 � c2 with f � c1 � gy or g �
c � fy. If f and g are well-behaved, then there ex-
ists a vertical stripe a � x � b with a 	 α 	 b that
contains exactly one intersection point of f and g,
namely � α � β � , and there is no extreme point of f or
g inside this stripe. Especially this means that f and
g do not intersect in extreme points (Figure 2).

f

g

f

bα α baa bα

gg

a

f

g

a bα

f

���� ����

����  � !

"�"#

Figure 2: In the first picture the curves f and g are
well-behaved, in the following three pictures they are
not.
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Observe that well-behavedness only depends on the
given coordinate system and not on the geometry of
the input curves. A random shear at the beginning
will establish well-behaved input-curves with high
probability. We will describe in section 8 how to test
whether a pair of curves is well-behaved.

4 The overall approach

We are interested in the topology of a planar arrange-
ment of a set F of n non-singular input curves. The
curves partition the affine space in a natural way into
three different types of maximal connected regions
of dimensions 2, 1, and 0 called faces, edges, and
vertices, respectively.

We want to compute the arrangement with a sweep-
line algorithm. At each time during the sweep the
branches of the curves intersect the sweep-line in
some order. While moving the sweep-line along the
x-axis a change in the topology of the arrangement
takes place if this ordering changes. This happens if
at least two different curves f � g 	 F intersect, or if
two new branches of a curve f 	 F start, or if two
branches of a curve f 	 F end. For illustration have
a look at Figure 3.

f

g f f

Figure 3: Two curves f and g intersect, two new
branches of a curve f start, or two branches of f end.

Points of f where two branches start or end necessar-
ily have a vertical tangent, that means they are inter-
section points of f and fy. This leads to the follow-
ing definition of points on the x-axis that force the
sweep-line to stop and to recompute the ordering of
the curves:

Definition 1 The event points of a planar arrange-
ment induced by a set F of non-singular planar
curves are defined as the intersection points of each
two curves f � g 	 F and as the intersection points of
f and fy for all f 	 F.

Our main algorithmic approach follows the ideas of
the Bentley-Ottman sweep [3]. We hold up an X �
and a Y -structure. The X -structure contains the x-
coordinates of event points. In the Y -structure we
maintain the ordering of the curves along the sweep-
line. At the beginning we found that for every f 	 F
the curves f and fy are well-behaved. For details on
how to test this attribute and, if necessary, how to es-
tablish it with a random shear (which has no effect on
the topology of the arrangement) we refer to Section
8. We insert the x-coordinates of all extreme points
into the empty X -structure. We shortly remark that
there can be event points left to the leftmost extreme
point. This can be resolved by moving the sweep-
line to the left until all pairs of adjacent curves in the
Y -structure have their intersection points to the right.

If the sweep-line reaches the next event point we
stop, identify the pairs of curves that intersect, the
kind of intersection they have and their involved
branches, recompute the ordering of the curves along
the sweep-line, and according to this we update the
Y -structure. If two curves become adjacent that were
not adjacent in the past, we test whether they are
well-behaved, see Section 8. If f and g are not
well-behaved, we shear the whole arrangement and
start from the beginning. Otherwise we compute the
x-coordinates of their intersection points and insert
them into the X -structure.

5 The X-structure

In order to make the overall approach compute the
exact mathematical result in every case there are
some problems that have to be solved. Describing the
sweep we stated that one of the fundamental opera-
tions is the following: For two well-behaved curves
f and g insert the x-coordinates of their intersec-
tion points into the X -structure. A well known al-
gebraic method is the resultant computation of f and
g with respect to y [7]. We can compute a polynomial
res � f � g � 	 Q

�
x � of degree at most deg � f � � deg � g �

with the following property:

Proposition 1 Let f � g 	 Q
�
x � y � be generally aligned

curves that are in general relation. A number α 	 IR
is a root of res � f � g � if and only if there exists exactly
one β 	 C such that f � α � β � � g � α � β � � 0 and β 	 IR.
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The x-coordinates of real intersection points of f and
g are exactly the real roots of the resultant polyno-
mial res � f � g � . Unfortunately, the intersection points
of algebraic curves in general have irrational coor-
dinates. By definition, every root of res � f � g � is an
algebraic number. For deg � res � f � g ��� � 2 there is no
general way via radicals to explicitly compute the al-
gebraic numbers in every case. But we can determine
an isolating interval for each real root α of res � f � g � ,
for example with the algorithm of Uspensky [6]. We
compute two rational numbers a and b such that α is
the one and only real root of res � f � g � in

�
a � b � . The

pair � res � f � g ��� � a � b ��� yields a non-ambiguous ratio-
nal representation of α. Of course in this represen-
tation the entry res � f � g � could be exchanged by any
rational factor p 	 Q

�
x � of res � f � g � with p � α � � 0.

Additionally we like α to remember the two curves
f and g it originates from. We end up with inserting
a representation � p � � a � b � � f � g � for every event point
induced by f and g into the X -structure. Remark that
several pairs of curves can intersect at the event point
x � α. In this case there are several representations
of the algebraic number α in the X -structure, one for
each pair of intersecting curves.
During the sweep we frequently have to determine
the next coming event point. In order to support this
query with the help of the isolating intervals we fi-
nally have to ensure the following invariant: Every
two entries in the X -structure either respresent the
same algebraic number, and in this case the isolat-
ing intervals in their representation are identical, or
their isolating intervals are disjoint. This can be eas-
ily achieved using gcd-computation of the defining
univariate polynomials and bisection by midpoints of
the isolating intervals.

6 The Y-structure

A second problem that has to be solved is how to up-
date the Y -structure at an event point. At an event
point we have to stop with the sweep-line, iden-
tify the pairs of curves that intersect and their in-
volved branches, and recompute the ordering of the
curves along the sweep-line. As we have seen, the
x-coordinate α of an event point is represented by at
least one entry of the form � p � � a � b � � f � g � in the x-
structure. So we can directly determine the pairs of

curves that intersect at x � α. For each pair f and
g of intersecting curves we have to determine their
involved branches. Furthermore we have to decide
whether these two branches cross or just touch, but
do not cross each other. As soon as we have these
two information, updating the ordering of the curves
along the sweep-line is easy.
In general, event points have irrational coordinates
and therefore we cannot exactly stop the sweep-line
at x � α. The only thing we can do is stopping at
the rational point a to the left of α and at the rational
point b to the right of α. Using a root isolation al-
gorithm, gcd-computation of univariate polynomials,
and bisection by midpoints of the separating intervals
we compute the sequence of the branches of f and g
along the rational line x � a. We do the same along
the line x � b. Finally, we compare these two order-
ings. In some cases this information is sufficient to
determine the kind of event point and the involved
branches of the curves inside the stripe a � x � b.
Due to our assumption of well-behavedness we can
directly compute extreme points of f (consider Fig-
ure 4):

yf

x=b:

f

α ba

x=a: ����

������

�	 
�� ��

������

����
��

��

��

����

Figure 4: For computing extreme points it is suffi-
cient to compare the sequence of f and fy at x � a to
the left and at x � b to the right of α.

Theorem 1 Let � α � β � 	 IR2 be an extreme point of
a non-singular curve f and assume that f and fy are
well-behaved. We can compute two rational numbers
a � α � b with the following property: the identifica-
tion of the involved branches of f is possible by just
comparing the sequence of hits of f and fy along
x � a and along x � b.
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Proof. The x-coordinate α of the extreme point
has an interval representation � p � � a � b ��� in the X -
structure. By assumption the curves f and fy are
well-behaved and therefore we know that α is not
a real root of res � fy � fyy � y � . Using bisection by mid-
point we shrink the isolating interval

�
a � b � of α until

it contains no real root of res � fy � fyy � y � .
Afterwards the vertical stripe a � x � b contains ex-
actly one extreme point of f , namely � α � β � , and no
extreme point of fy (and no singular point of fy).
The later implies that the number and ordering of the
branches of fy does not change in the interval

�
a � b � .

The curve f has exactly one point with a vertical
tangent inside the stripe and this point is not a flex.
Therefore we know that the number of branches at
x � a differs by 2 from the one at x � b. A well
known fact is that between every two roots of a uni-
variate polynomial p 	 Q

�
y � there is always a root of

its derivative py. So at x � a at least one branch of fy

lies between two branches of f . The same holds at
x � b.
In order to determine the two branches of f that in-
tersect in an extreme point we just have to compare
from � ∞ upwards the sequences of f and fy at x � a
and at x � b until we detect the first difference. The
branch i of f that causes this difference (either at
x � a or at x � b) intersects the � i � 1 � st branch of
f in an extreme point.

Intersection points of odd multiplicity between two
curves f and g are even more easy to determine (see
Figure 5).

f

g

α ba

x=a: 

x=b: ����

��

�� ����

	�	


��

�

������

��

��

������
������

��

Figure 5: For computing intersection points of odd
multiplicity it is sufficient to compare the sequence
of f and g at x � a to the left and at x � b to the right
of α.

Theorem 2 Let � α � β � 	 IR2 be an intersection point
of odd multiplicity of two well-behaved non-singular
curves f and g. We can compute two rational num-
bers a � α � b with the following property: the iden-
tification of the involved branches of f and g is pos-
sible by just comparing the sequence of hits of f and
g along x � a and along x � b.

Proof. The x-coordinate α of the intersection point
has an interval representation � p � � a � b ��� in the X -
structure. By assumption the curves f and g are well-
behaved and therefore we know that α is neither a
real root of res � f � fy � y � nor of res � g � gy � y � . Using bi-
section by midpoint we shrink the isolating interval�
a � b � of α until it contains no real root of res � f � fy � y �

and no real root of res � g � gy � y � .
Afterwards the vertical stripe a � x � b contains ex-
actly one intersection point of f and g, namely � α � β � ,
and no extreme point of f or g. The later implies that
the ordering of the branches of f does not change
in the interval

�
a � b � , nor does the ordering of the

branches of g.

By assumption the intersection point of f and g has
odd multiplicity and therefore we know that f and g
change their ordering in � α � β � .
In order to determine the branches of f and g that
intersect we just have to compare from � ∞ upwards
the sequences of f and g at x � a and at x � b until
we detect the first difference. The branches i of f
and j of g that cause this difference are the ones that
intersect.

Of course this test can be easily extended to arbi-
trary curves under the assumption that the intersec-
tion point � α � β � is not a singular point of any of the
curves.

What remains to do is locating intersection points
� α � β � of even multiplicity. These points are rather
difficult to locate. From the information how the
curves behave slightly to the left and to the right of
the intersection point we cannot draw any conclu-
sions. At x � a and at x � b the branches of f and g
appear in the same order, see Figure 6. We will show
in the next section how to extend the idea of Jacobi
curves introduced in [12] to intersection points of ar-
bitrary multiplicity.
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Figure 6: Intersection points of even multiplicity lead
to the same sequence of f and g to the left and to the
right of α.

7 The Jacobi Curves

In order to locate an intersection point of even multi-
plicity between two curves f and g it would be help-
full to know a third curve h that cuts f as well as g
transversally in this point, see Figure 7.

g h

f

α ba

x=b:

x=a: 

��

��� 
!"!#"# $"$%"%

Figure 7: Introduce an auxiliary curve h in order to
locate intersection points of even multiplicity of f
and g.

This would reduce the problem of locating the inter-
section point of f and g to the easy one of locating
the transversal intersection point of f and h and the
transversal intersection point of g and h. In the last
section we have shown how to compute the indices
i, j, and k of the intersecting branches of f , g, and h,
respectively. Once we have determined these indices
we can conclude that the ith branch of f intersects
the jth branch of g.
We will give a positive answer to the existence of
transversal curves with the help of the Theorem of

Implicit Functions. Let � α � β � 	 IR2 be a real in-
tersection point of f � g 	 Q

�
x � y � . We will iteratively

define a sequence of polynomials h̃1 � h̃2 � h̃3 � ����� such
that h̃k cuts transversally through f in � α � β � for some
index k. If f and g are well-behaved, the index k is
equal to the degree of α as a root of res � f � g � y � . The
result that introducing an additional curve can solve
tangential intersections is already known for k � 2
[12]. What is new is that that this concept can be ex-
tended to every multiplicity k

� 2. All the following
results are not restricted to non-singular curves. We
can determine every tangential intersection point of
two arbitrary curves provided that it is not a singular
point of one of the curves.

Definition 2 Let f and g be two planar curves. We
define generalized Jacobi curves in the following
way:

h̃1 : � g

h̃i & 1 : � � h̃i � x fy
� � h̃i � y fx �

Here is our main Theorem that will provide all nec-
essary mathematical tools:

Theorem 3 Let f and g be two algebraic curves
with disjoint factorizations. Let � α � β � be an inter-
section point of f and g that neither is a singular
point of f nor of g. There exists an index k ' 1 such
that h̃k cuts transversally through f in � α � β � .

Proof. In the case g cuts through f in the point
� α � β � , especially if � α � β � is a transversal intersection
point of f and g, this is of course true for h1 � g. So
assume in the following that � gx fy

� gy fx ��� α � β ���
h̃2 � α � β ��� 0. From now on we will only consider the
polynomials h̃i with i ' 2.
By assumption we have that every point � α � β � is
a non-singular point of f : � fx � fy ��� α � β � �� 0. We
only consider the case fy � α � β � �� 0. In the case
fx � α � β � �� 0 and fy � α � β � � 0 we would proceed the
same way as described in the following by just ex-
changing the two variables x and y. The property
fy � α � β � �� 0 leads to � fx

fy
gy ��� α � β � � gx � α � β � and be-

cause � gx � gy ��� α � β � �� � 0 � 0 � we conclude gy � α � β � ��
0. From the Theorem of Implicit Functions we de-
rive that there are real open intervals Ix � Iy ( IR with
� α � β � 	 Ix ) Iy such that
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Figure 8: The second Jacobi curve h̃2 cuts transver-
sally through the intersection points of multiplicity 2
of f and g.

1. fy � x0 � y0 �
�� 0 and gy � x0 � y0 �
�� 0 for all � x0 � y0 ��	
Ix ) Iy,

2. there exists a continuous function F : Ix � Iy

with the two properties

(a) f � x � F � x ��� � 0 for all x 	 Ix

(b) � x � y ��	 Ix ) Iy with f � x � y ��� 0 leads to y �
F � x � ,

3. and there exists a continuous function G : Ix �
Iy with

(a) g � x � G � x ��� � 0 for all x 	 Ix

(b) � x � y ��	 Ix ) Iy with g � x � y � � 0 leads to y �
G � x � .

Locally around the point � α � β � the curve defined by
the polynomial f is equal to the graph of the function
F . The same holds for g and G. Especially we have
β � F � α � � G � α � . Moreover, the Theorem of Im-
plicit Holomorphic Functions implies that F as well
as G are holomorphic and thus developable in a Tay-
lor series around the point � α � β � [13].
In the following we will sometimes consider the
functions hi : Ix ) Iy � IR, i ' 2, with

h2 : � gx

gy

� fx

fy
� h̃2

gy fy

hi & 1 : � � hi � x � � hi � y � fx

fy

instead of the polynomials h̃i. Each hi is well de-
fined for � x � y ��	 Ix ) Iy. We have have the following
relationship between the functions hi and the poly-
nomials h̃i defined before: For each i ' 2 there exist
functions δi � 2 � δi � 3 � ����� � δi � i : Ix ) Iy � IR such that

��� � hi � δi � 2 � h̃2
� δi � 3 � h̃3

� ����� � δi � i � h̃i

with δi � i � x � y � �� 0 for all � x � y � 	 Ix ) Iy. We prove
this by induction on i. For i � 2 this is obviously
true with δ2 � 2 ��� gy fy � � 1. The general case follows
directly from the induction step:

hi & 1 � 1
fy

����� hi � x fy
� � hi � y fx �

� 1
fy

�����
i

∑
j � 2

δi � j h̃ j � x fy
� �

i

∑
j � 2

δi � j h̃ j � y fx �

� 1
fy

���
i

∑
j � 2

δi � j ��� h̃ j � x fy
� � h̃ j � y fx �� ��� 	

� h̃ j 
 1

�

� 1
fy

���
i

∑
j � 2

h̃ j ��� δi � j � x fy
� � δi � j � y fx �� ��� 	

� :γi � j
�

� 1
fy

γi � 2
� ��� 	
: � δi 
 1 � 2

h̃2
� i

∑
j � 3

1
fy
� δi � j � 1

� γi � j �
� ��� 	

� :δi 
 1 � j

h̃ j

� 1
fy

δi � i
� ��� 	
� :δi 
 1 � i 
 1

h̃i & 1 �

Let us assume we know the following proposition:
Let k ' 1. If F


i � � α � � G


i � � α � for all 0 � i � k � 1,

then hk & 1 � α � β � � G

k � � α � � F


k � � α � .

We know that the two polynomials f and g have dis-
joint factorizations. That means the Taylor series of
F and G differ in some term. Remember that we con-
sider the case that the curves defined by f and g in-
tersect tangentially in the point � α � β � . So there is an
index k ' 2 such that F


i � � α � � G


i � � α � for all 0 � i �

k � 1 and F

k � � α ���� G


k � � α � . According to the propo-

sition we have hi & 1 � α � β ��� G

i � � α � � F


i � � α ��� 0 for

all 1 � i � k � 1. From equation (*) we inductively
obtain also h̃i & 1 � α � β � � 0, 1 � i � k � 1. Especially
this means that h̃k intersects f and g in � α � β � . The
intersection is transversal if and only if

��� h̃k � x fy
� � h̃k � y fx ��� α � β � � h̃k & 1 � α � β � �� 0 �
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This follows easily from 0 �� G

k � � α � � F


k � � α � �

hk & 1 � α � β � � δk & 1 � k & 1 � α � β � � h̃k & 1 � α � β � .
It remains to state and prove the proposition:

Proposition 2 Let k ' 1. If F

i � � α � � G


i � � α � for all

0 � i � k � 1, then hk & 1 � α � β � � G

k � � α � � F


k � � α � .

Proof. For each i ' 2 we define a function Hi : Ix �
IR by

Hi � x � : � hi � x � F � x ��� �
For x � α we derive Hi � α � � hi � α � β � . So in terms of
our new function we want to prove that Hk & 1 � α ���
G

k � � α � � F


k � � α � holds if F


i � � α ��� G


i � � α � for all

0 � i � k � 1.
By definition we have f � x � F � x ��� : Ix � IR and
f � x � F � x ����� 0 for all x 	 Ix. That means f � x � F � x ��� is
constant and therefore its derivative is equal to zero:

d
dx

f � x � F � x ���
� fx � x � F � x ��� � F � � x � fy � x � F � x ���
� 0 �

We conclude

F � � x ��� � fx � x � F � x ���
fy � x � F � x ���

�

For the functions Hi the equality H �i � x � � Hi & 1 � x �
holds, because

H �i � x �
� � hi � x � x � F � x ��� � F � � x � ��� hi � y � x � F � x ���
� ��� hi � x � fx

fy
��� hi � y ��� x � F � x ���

� hi & 1 � x � F � x ���
� Hi & 1 � x � �

Inductively we obtain Hk & 1 � x � � H

k � 1 �

2 � x � for all
k ' 1. In order to prove the proposition it is suf-
ficient to show the following: Let k ' 1. If for
all 0 � i � k � 1 we have F


i � � α � � G


i � � α � , then

H

k � 1 �

2 � α � � � G � � F � �

k � 1 � � α � .

1. Let k � 1. Our assumption is F � α � � G � α � and
we have to show H2 � α � � � G � � F � ��� α � . We

have

H2 � x �
� h2 � x � F � x ���
� gx � x � F � x ���

gy � x � F � x ���
� fx � x � F � x ���

fy � x � F � x ���
� G � � F � ��� x �
� gx � x � G � x ���

gy � x � G � x ���
� fx � x � F � x ���

fy � x � F � x ���
and both functions just differ in the functions
that are substituted for y in gx


x � y �

gy

x � y � . In the equal-

ity of H2 � x � we substitute F � x � , whereas in the
one of � G � � F � � we substitute G � x � . But of
course F � α � � G � α � leads to

H2 � α � � gx � α � F � α ���
gy � α � F � α ���

� fx � α � F � α ���
fy � α � F � α ���

� gx � α � G � α ���
gy � α � G � α ���

� fx � α � F � α ���
fy � α � F � α ���

� � G � � F � ��� α � �

2. Let k � 1. We know that F

i � � α � � G


i � � α � for

all 0 � i � k � 1. We again use the equations

H2 � x � � gx � x � F � x ���
gy � x � F � x ���

� fx � x � F � x ���
fy � x � F � x ���

� G � � F � ��� x � � gx � x � G � x ���
gy � x � G � x ���

� fx � x � F � x ���
fy � x � F � x ���

and the fact that H2 � x � and � G � � F � � only dif-
fer in the functions that are substituted for y in
gx

x � y �

gy

x � y � .

By taking � k � 1 � times the derivative of H2 � x �
and � G � � F � � , we structurally obtain the same
result for both functions. The only difference
is that some of the terms F


i � � x � , 0 � i � k �

1, in H2 are exchanged by G

i � � x � in � G � � F � � .

But due to our assumption we have F

i � � α � �

G

i � � α � for all 0 � i � k � 1 and we obtain

H

k � 1 �

2 � α � � � G � � F � �

k � 1 � � α � �

We have proven that for a non-singular tangential in-
tersection point of f and g there exists a curve h̃k
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that cuts both curves transversally in this point. Es-
pecially this is true for every tangential intersection
point of two non-singular curves f and g. The index
k depends on the degree of similarity of the functions
that describe both polynomials in a small area around
the given point. The degree of similarity is mea-
sured by the number of successive matching deriva-
tives in this point. A useful result would be the fol-
lowing: If k is the multiplicity of α in the resultant
res � f � g � y � , then h̃k cuts transversally through f in
the corresponding point � α � β � . This is an immediate
consequence of the previous theorem:

Corollary 1 Let f � g 	 Q
�
x � y � be two polynomials in

general relation and let � α � β � be a non-singular in-
tersection point of the curves defined by f and g.
If k is the degree of α as a root of the resultant
res � f � g � y � , then h̃k cuts transversally through f .

Proof. A well known result from algebra is that
the resultant of two univariate polynomials equals the
product of the differences of their roots [7]. So if we
compute the resultant X � res � f � g � y � for two bivari-
ate polynomials f and g, the value of X for each fixed
x0 equals the product of the differences of the roots
of f � x0 � y � and g � x0 � y � .
In the previous theorem we have proven that, in a
region Ix ) Iy locally around the point � α � β � , we
can develop f and g in Taylor series y � F � x � �
∑∞

i � 0
F

�
i �  α �
i! � x � α � i and y � G � x � � ∑∞

i � 0
G

�
i �  α �
i! � x �

α � i, respectively. The index i for which h̃i cuts
transversally through f and g equals the index for
which F


i � � α � �� G


i � � α � holds the first time.

For a point x0 	 Ix we know the root F � x0 � of the
univariate polynomials f � x0 � y � and the root G � x0 � of
g � x0 � y � . So for all x0 	 Ix the term G � x0 � � F � x0 �
contributes to X � x0 � . We conclude that all roots of
G � x � � F � x � in Ix are roots of X , together with their
multiplicities. By assumption � α � F � α ��� is the only
intersection point of f and g at x � α. That means the
degree k of � x � α � in X equals the degree of � x � α �
in G � x � � F � x � . We obtain our desired result that h̃k

cuts transversally through f and g.

8 Well-behaved input curves

Finally it remains to justify the well-behavedness as-
sumption we have made for every pair of curves con-
sidered during the execution of our algorithm. We
will show how to test well-behavedness. If we de-
tect that for one pair of curves the criterion is not
fulfilled, then we know that we are in a degenerate
situation due to the choice of our coordinate sys-
tem. In this case we stop, shear the whole set of
input curves by random (for a random v 	 Q we ap-
ply the affine transformation ψ � x � y � � � x �

vy � y � to
each input polynomial) and restart from the begin-
ning. A shear does not change the topology of the ar-
rangement and we end up with pairs of well-behaved
curves.

For well-behavedness of two curves f and g we have
to check that

1. the pairs of curves � f � g � , � f � fy � , and � g � gy � are
pairwise separate,

2. f and g are both generally aligned, and

3. that f and g are in general relation.

In order to examine the separation of two pairs of
curves � f1 � g1 � and � f2 � g2 � we first look whether f1

is a constant multiple of f2 and g1 is a constant mul-
tiple of g2. This can be easily done by comparing
the coefficients of the polynomials. If the answer is
positive, � f1 � g1 � and � f2 � g2 � are separate. Otherwise
we compute the gcd of the univariate polynomials
res � f1 � g1 � y � and res � f2 � g2 � y � . In the case the gcd is
a constant, we know that � f1 � g1 � and � f2 � g2 � are sep-
arate. Otherwise they are not and we have to shear.

The second criterion, general alignment of f and of
g, is even more easy to check by just examining the
leading coefficients with respect to y.

What finally remains to do is testing whether f and
g are in general relation. In case we already know
that � f � g � , � f � fy � , and � g � gy � are pairwise separate
and that f and g are generally aligned, this test can
be easily realized with the help of the first subresul-
tant sres1 � f � g � y � 	 Q

�
x � of f and g. A well-known

property of this polynomial is the following [24]:
(*) A complex number α is a common root
of res � f � g � y � and sres1 � f � g � y � if and only if
f � α � y ��� g � α � y � 	 Q

�
y � have a common factor of mul-

tiplicity ' 2.

10



Theorem 4 Let f and g be two non-singular gener-
ally aligned curves and let � f � g � , � f � fy � , and � g � gy �
be pairwise separate. Then f and g are in general re-
lation if and only if gcd � res � f � g � y ��� sres1 � f � g � y �����
constant.

Proof. Assume that f and g are in general relation
and let α be a root of res � f � g � y � . Then there exists
exactly one β 	 C with f � α � β � � g � α � β � � 0. That
means for some index i ' 1 the polynomial � y � β � i is
the gcd of f � α � y � and g � α � y � . We even have i � 1 be-
cause otherwise � α � β � would also be a root of fy and
gy contradicting � f � g � , � f � fy � , and � g � gy � being pair-
wise separate. We conclude that every root α of the
resultant of f and g cannot be a root of sres1 � f � g � y � .
The other direction follows easily from the property
(*) of sres1 � f � g � y � mentioned above.
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