DIMACS Security & Cryptography
Crash Course – Day 1
Hashing

Prof. Amir Herzberg
Computer Science Department, Bar Ilan University
http://amir.herzberg.name

© Amir Herzberg, 2003. Permission is granted for academic use without modification. For other use please contact author.
Outline

- Crypto-Hash properties
- Using and Collecting Randomness
- Randomness of Hash
- Confidentiality of Hash
- One-way functions
- Random Oracle
- Integrity & Collision Resistance

- Collision Resistant Hash Functions (CRHF)
- Design of CRHF
- Merkle-Damgard construction
- Standard hash functions
- Conclusions
Crypto-Hash Functions - `Wish List`

- **Compression**
 - Unbounded/Long input
 - Short (finite) output

- **Confidentiality**
 - Can’t find x from $h(x)$

- **Collision-resistance**
 - `Strong`: can’t find $x, x’$ s.t. $h(x) = h(x’)$
 - `Weak`: given x, can’t find $x’ \neq x$ s.t. $h(x) = h(x’)$

- **Randomness**: uniform output distribution
Collecting Randomness

- Use available sources with some randomness
 - Different `unpredictable, unobservable` events
- Extract random seed \(n \) \(\text{bits} \)
 - In practice: usually using `cryptographic hash function`
- Use PRG to generate sufficient random bits
- Certainly Ok if hash was a random function…
Random Oracle Methodology

- Analyze as if hash $h()$ is a *random function*
 - Of course an invalid assumption as $h()$ is fixed!
 - Whenever $h()$ is used, we call oracle for the random function (black box containing random function)
- Good for screening insecure solutions
- Security under random oracle implies security to many (not all!!) attacks
- Not a complete proof of security, but a good argument/evidence of security.
Confidentiality of Hash

- Hash has no secret key
 - Cannot use to send secret message
- But hash should hide input
 - Cannot learn input given output (`one way function`)
- f is OWF (One Way Function) if:
 - f is computed by some PPT algorithm,
 - yet for any PPT alg. A: $P_A(n) = \Pr\{f(A(f(x))) = f(x) : x \in \{0,1\}^n\} \approx p_0$
- PPT: Probabilistic Polynomial Time algorithm
 - Time complexity $< p(n)$ for some polynomial $p(n)$
 - $P_A(n) \approx_p 0$:
 - Every polynomial $p(n)$, exists some l_{min} s.t. if $n > l_{min}$ and $x \in \{0,1\}^n$ then $P_A(n) < 1/p(n)$.
- Asymptotic definition; says nothing about any fixed input length
- Worse – maybe f exposes partial info on input?
- Most works use `random oracle` to simplify security analysis
Collision Resistance

- **Simplified (Strong) Collision Resistance Assumption:** assume that it is hard (infeasible) to find a collision, i.e. \(<x,x'> \) such that \(x \neq x' \) yet \(h(x) = h(x') \).

- Natural definition, but problematic:
 - \(h \) is fixed
 - Adversary can simply output a specific collision in it.
 - Possible fix: (public) key

- Holds for a random function (oracle)
Weak CRHF

- **Weakly Collision Resistant Hash Function**: it is hard to find a collision with a specific (random) \(x \).

- A function \(h \) is a **Weakly CRHF** if:
 - for every length \(l \geq n \),
 - given \(x \in \{0,1\}^l \),
 - it is infeasible to find \(x' \neq x \) s.t. \(f(x') = f(x) \).

- Property also called **2nd pre-image resistance**.
Applying Weakly CRHF

- **Weakly Collision Resistant Hash Function**: it is hard to find a collision with a specific (random) x.

- Uniformly distributed input (*not* chosen by Adversary!)

- Alice sends message to Bob, and signs its hash
 - Bob knows that Alice sent the message
 - Only if the message is uniformly distributed!
 - Can Bob prove Alice sent (signed) the message?
Weakly CRHF may be too weak...

- Sending signed agreement:
 - Alice reaches agreement with Bob
 - Alice signs hash of agreement
 - Bob can verify Alice signed the agreement

- But: agreement *not* uniformly distributed!
 - Maybe Bob/Alice chose it to have collision?

- Solutions:
 - Signer ensures contract is `randomized` (possibly use hash with random public key)
 - Or: keyless hash with `Simplified (Strong) Collision Resistance Assumption`
 - Signer responsible for any properly signed version
Designing CRHF

- Problem: Variable Input Length (VIL)
 - Hard to design and test (by cryptanalysis)
 - Idea: build VIL CRHF from FIL CRHF
 - FIL CRHF are also called compression function: $\text{comp} : \{0,1\}^{2n} \rightarrow \{0,1\}^n$

\[
\begin{align*}
{x} & \in \{0,1\}^n & \text{comp} & \rightarrow & \text{comp}(x) & \in \{0,1\}^n \\
{y} & \in \{0,1\}^n
\end{align*}
\]
Constructing VIL CRHF from FIL CRHF

- Idea: use iterative process, compressing block by block
- Let the input x be l blocks of n bits
 - Pad the last block if necessary
- Let $y_0 = IV$ be some fixed/random n bits (IV=Initialization Value)
- For $i=1,..l$, let $y_i = c(x[i], y_{i-1})$
- Output $h(x) = y_{l+1}$
- Prefix attack: Pick prefix p and random $IV=v$. Let $z = h_v(p)$ with $IV=v$. Then for any x holds: $h_z(x) = h_v(p || x)$.

```
x[1] x[2] ... x[l]
```

```
IV   c   c   c
```

$h(x) = y_{l+1} = c(x[l], y_{l-1})$
Merkle-Damgard FIL→VIL Hash

- Build h from compression function: $c : \{0, 1\}^{2n} \rightarrow \{0, 1\}^n$
- Let the input x be l blocks of n bits
 - Pad the last block if necessary
 - Add extra block, $x[l+1] = |x|$
- Let $y_0=IV$ be some fixed n bits (IV=Initialization Value)
- For $i=1,..l+1$, let $y_i = c(x[i], y_{i-1})$
- Output $h(x)=y_{l+1}$

Claim: given $h(x)=h(x')$, for $x \neq x'$, we can find $z \neq z'$ s.t. $c(z)=c(z')$.

\[
\begin{array}{cccccc}
IV \rightarrow & c & c & & & c \rightarrow h(x)=y_{l+1}=c(|x|,y_l) \\
\end{array}
\]
Standard hash functions

- Several hash standards are widely-used standards
 - Allowing security by evidence of failed cryptanalysis
 - Many efficient, free/inexpensive, interoperable implementations
 - All existing standards are for unkeyed hash functions:
 - MD5 (MD = Message Digest)
 - SHA-1 (SHA = Secure Hash Algorithm)
 - RIPEMD

- Stated Goals:
 - Collision-Resistance: `strong CRHF` and `weak CRHF`
 - Confidentiality: one-way function

- All are very efficient, e.g. cf. to encryption
- All use Merkle-Damgard iterative construction +…
Conclusion

- Crypto-Hash functions are useful for
 - Providing short `digest` of long documents
 - Extracting randomness
 - Confidentiality: hiding pre-image (original document)
 - Integrity: detecting changes
 - Proving knowledge of pre-image

- Be careful in definition/assumption used
 - One-way property may expose some (of the) input
 - Random oracle analysis – simple argument of security
 - Prefer cryptanalysis-tolerant constructions
Extras...
Finding Collisions – Birthday Paradox

- Compute hashes of \(2^{2^n/2}\) random values
- With probability > \(\frac{1}{2}\), there will be a collision
- Why? - `birthday paradox`(Proof omitted)
 - Intuition: probability of a collision to given \(x\) is roughly \(1/2^n\); but we allow any collision
- Conclusion: for collision resistance we need double the `effective key length`
- In practice: searching \(2^{64}\) values required one month with 10M$ machine in 1994 [OW94]
 - Expected cost today: less than 100,000$
- Consider weaker notions
Security of MD Construction

Theorem: if \(\text{comp} \) is collision-resistant, then \(h \) is collision resistant.

Proof: we use collision in \(h \) to find collision in \(\text{comp} \). Suppose \(h(x) = h(x') \) for \(x \neq x' \).

- Denote \(l = |x| \); note \(x[i+1] = l \). Hence
 \(h(x) = \text{comp}(l || y) = \text{comp}(l' || y') \). Hence assume \(l = l' \) and \(y_i = y'_i \) (or collision in \(\text{comp} \)).

- Recursively for \(j = l \) to \(1 \), we have \(y_j = y'_j \), i.e.
 \(\text{comp}(x[j] || y_{j-1}) = \text{comp}(x'[j] || y'_{j-1}) \).
 Hence \(x[j] = x'[j] \) and \(y_{j-1} = y'_{j-1} \). But \(x \neq x' \).
Alternative - Hash Trees

- To hash a long document or many docs…
 - Hash each document (or part)
 - Hash all hashes (possibly recursively)
 - Can use compression function(s) (with finite input)
- Less efficient than MD when validating all inputs
- Requires to keep state (logarithmic in document size)
- Advantages when validating only some inputs:
 - Efficiency: validate only what you need
 - Reuse: some recipients may not need all docs
 - Privacy: some docs may not be shared with all

\[
h(h(Doc_1)|...|h(Doc_5))
\]
Hash with multiple properties

- We saw multiple goals/definitions for crypto-hash functions:
 - Confidentiality properties, e.g. OWHF
 - Randomness properties, e.g. t-resilient PR hash
 - Collision resistance properties: weak CRHF, t-resilient

- Goals:
 - Hash satisfying multiple goals
 - To have standard, `general-purpose` crypto-hash
Cryptanalysis-tolerance: Cascade

- Construct h by composing candidates: h_1, h_2, \ldots
- Cascade composition: $h(x) = h_1(h_2(x))$.
- Clearly fails for `very weak` h_1, h_2
- Example: $h_1(x) = 0 \Rightarrow h(x) = h_2(0)$
- Assume $h_1, h_2: \{0, 1\}^* \rightarrow \{0, 1\}^L$ are regular:
 - For every $l > L$, $y, y' \in \{0, 1\}^L$, the number of pre-images of length l of y and y' is (almost) equal
- Cascading of regular functions ensures cryptanalysis-tolerance for confidentiality:
 - If one of h_0, h_1 is one-way function, then h is one-way
- But… any collision of h_2 is a collision of h
Parallel Composition

- Parallel Composition: \(h(x) = h_1(x) \ || \ h_2(x) \)
- Claim: collision for \(h \) \(\rightarrow \) collisions for both \(h_1 \) and \(h_2 \)
- Proof: suppose \(h(x) = h(x') \), i.e. \(h_1(x) \ || \ h_2(x) = h_1(x') \ || \ h_2(x') \). Hence \(h_1(x) = h_1(x') \), \(h_2(x) = h_2(x') \).

- If either \(h_1 \) or \(h_2 \) is a (weak / \(t \)-resilient) CRHF, then \(h \) is a (weak / \(t \)-resilient) CRHF.

- But parallel composition is **bad for confidentiality**
 - \(x \) `more exposed`
 - E.g. if \(h_1 \) not OWHF than \(h \) is not OWHF…

- We often require hash with *multiple properties*
`Hybrid` composition...

- Cascade $h(x) = h_1(h_2(x))$: easier to find collisions...
- Parallel $h(x) = h_1(x) || h_2(x)$: easier to find pre-image
- What about cascading with input: $h(x) = h_1(x || h_2(x))$?
 - A pre-image of $h()$ provides a pre-image of h_1
 - Collision in $h()$ implies collision in h_1
 - Assuming only few collisions in h_1, say $h_1(x||y) = h_1(x'||y')$...
 Requires $y' = h_2(x')$, $y = h_2(x)$
- This construction offers some confidentiality and some collision-resistance properties...
- Used in `standard` hash functions MD5, SHA-1...
Merkle-Damgard + Partial Regularity

- MD construction: Build h from compression function: $c : \{0,1\}^{2n} \rightarrow \{0,1\}^n$
- Let the input x be l blocks of n bits
- Let $y_0 = IV$ be some fixed n bits (IV=Initialization Value)
- Partial regularity: if IV is uniformly-distributed, then so is $h(x)$
- How? For $i = 1,..,l+1$, let $y_i = y_{i-1} + c(x[i], y_{i-1})$
- Output $h(x) = y_{l+1}$

Claim: given $h(x) = h(x')$, for $x \neq x'$, we can find $z \neq z'$ s.t. $c(z) = c(z')$.

![Diagram](attachment:image.png)

$IV \xrightarrow{c} c \xrightarrow{c} h(x) = y_{l+1} = c(|x|, y_l)$
MD5

- Developed by RSA Inc.
- Output is 128 bit
 - Collisions can be found with 2^{64} time and storage
 - Believed feasible (with about 100,000$ equipment for 1 month)
- Collisions found in the compression function
 - But only in the chaining value – so not a collision for MD5 (yet)
- Still widely used, but being `phased out`
- About twice faster than RIPE-MD, SHA-1
- Compression function: Cascade of four 128b+512b → 128b compression functions
MD5: Compressing block i

$y[i]$ is added to c_1, c_2, c_3, and c_4 with addition mod 2^{32}.

$x[i]$ is 16 words (32 bits each) → 512b
MD5 Compression Functions

- All four functions $c_1, \ldots c_4$ have same structure
- Break 128b `chaining value` $Y[i]$ to four 32-bit words: A, B, C, D
- Each function has 16 rounds $r=1..16, \ldots 64$
- Single round computation:
 - $A_{r+1}=D_r$, $C_{r+1}=B_r$, $D_{r+1}=C_r$
 - $B_{r+1}=B_r+<_{s[r]} (A_r+g(B_r,C_r,D_r)+x[i][r]+T[i])$
 - $T[i]=\text{int}(2^{32} \text{ abs}(\sin(i)))$
 - $<_{s}$ is circular left shift by s; $s[r]$ is a fixed table
- No theory behind design, no analytical proof
SHA-1 (Secure Hash Algorithm)

- Developed by NIST, published as FIPS 180-1
- Output is 160 bit
 - New versions: 256b, 384b and 512b proposed
- Widely used; `closed` design process, criteria
- Very similar design to MD5
 - 160b chaining block
 - Chaining value added (mod 2^{32}) to output of compression
RipeMD-160

- Developed by EU RICE project
- Open design process, criteria
- Variants: 128, 160, 256 or 320 bits
- RIPEMD-160 most common

Compression function:
- Is RipeMD OWF, assuming one/few blocks are OWF?
- Same for collision-resistance
Towards Cryptanalysis-tolerant Hash

- **Goal:** provably cryptanalysis-tolerant hash
- **1st idea:** combine parallel and serial compositions:

 Confidentiality: Ok for regular functions (cascade).

 Collision-resistance: No

 Select some \(m \neq m' \).

 Select \(h_0 \) s.t.:

 \[
 h_0(m) = h_0(m') \\
 h_0(h_1(m)) = h_0(h_1(m'))
 \]
The *E* Cryptanalysis-tolerant Composition

- **Goal:** provably cryptanalysis-tolerant hash
- **2nd idea:** combine *three* functions: $E[h_0, h_1, h_2]$

- Confidentiality: Ok
- Collision-resistance: Ok

Why? Collision of $E \rightarrow h_o(h_1(m)) = h_0(h_1(m')) \rightarrow$

Collision of either h_o or h_1

- Assuming h_0, h_1, h_2 are *all* regular functions
- Can we avoid this assumption? … see paper
Recall `paper, stone, scissors`

- **Confidentiality**
 - Bob can’t know what Alice chose

- **Collision-resistance**
 - Alice can’t `change her hand`

- **Randomness**
 - $h(x)$ appears `random`
 - If $h(x)$ is deterministic, confidentiality
Commitment Schemes

- Commitment ≈ Collision resistance + privacy
- Three functions: Commit, Decommit, Validate
 - Commit, Decommit have two inputs: message, random
 - Validate(m,Commit(m,r),Decommit(m,r))=True
- Security properties
 - Confidentiality: Commit(m,r) reveals nothing about m
 - Collision-resistance: infeasible to find m, m’, d, d’, c s.t. Validate(m,c,d)=Validate(m’,c,d’)=True
- Unfortunately this is impossible…
Randomness Required for Collision Resistance

- Collision-resistance: infeasible to find m, m', d, d', c s.t. $\text{Validate}(m,c,d) = \text{Validate}(m',c,d') = \text{True}$

- But: for any \textit{Commit} function there exist collisions: $<m,r>, <m',r'>$ s.t. $c = \text{Commit}(m,r) = \text{Commit}(m',r')$

- So maybe Alice knows such collision?
 - And then: $\text{Validate}(m,c,d) = \text{Validate}(m',c,d') = \text{True}$ where $d = \text{Decommit}(m,r)$, $d' = \text{Decommit}(m',r')$

- Solutions:
 - Use \textit{keyed commit function} with random (public) key
 - Or: ensure input to commitment is randomized
 - Recipient confirms proper randomization

- Still need random r for each new commitment!
Keyed Commitment Schemes

- **Keyed functions**: Commit, Decommit, Validate
- Commit_k, Decommit_k have inputs: key k, message, random
- Validate_k(m, Commit_k(m,r), Decommit_k(m,r))=True
- Confidentiality: Commit_k(m,r) reveals nothing on m
- Collision-resistance: no adversary ADV, given random k, can efficiently find m, m’, d, d’, c s.t.
 Validate_k(m,c,d)=Validate_k(m’,c,d’)=True
- Recipient confirms k is random, not chosen by ADV!
- If recipient adds randomness, we can avoid key!
Interactive Commitment Schemes

- Receiver (Bob) selects random input \(r_B \)
- Three functions: \(\text{Commit}, \text{Decommit}, \text{Validate} \)
 - \(\text{Commit}, \text{Decommit} \) have three inputs: message, \(r_A, r_B \)
 - \(\text{Validate}(r_B, m, \text{Commit}(m, r_A, r_B), \text{Decommit}(m, r_A, r_B)) = \text{True} \)
- Security properties
 - Confidentiality: \(\text{Commit}(m, r_A, r_B) \) reveals nothing about \(m \)
 - Collision-resistance: no adversary \(\text{ADV} \), given random \(r_B \), can efficiently find \(m, r_A, m', d' \) s.t.
 \(\text{Validate}_k(r_B, m', \text{Commit}_k(m, r_A, r_B), d') = \text{True} \)
`Paper, stone, scissors` using Interactive Commitment Scheme

Bob

Ladies first…
Please use r_B

commit($Paper, r_A, r_B$)

Stone

Alice

Paper, r_A

You won!

Decommit is often trivial
Commitment from Hashing

- `Standard` construction in practice:
 - \(\text{Commit}(m,r_A,r_B) = h(m||r_A||r_B) \)
 - \(\text{Decommit}(m,r_A,r_B) = r_A \)
 - \(\text{Validate}(r_B,m,c,d) = \text{TRUE if } c = \text{Commit}(m,d,r_B) \)

- Justified by:
 - Random oracle analysis, or ??? (ongoing work)

- Other provable-secure constructions require weaker \(h \)
 - But are more complex, not used in practice
 - Only keyed versions
 - Much theory work, e.g. zero-knowledge proofs,…
Application: Secure Government Bid

Goals:
- Receive `sealed bids` until deadline
- Open all bids, select the best after deadline

Concerns:
- Leakage of info about bids to other bidders
- Changing of bid after deadline

Solution:
- Publish RFP with randomizer r
- Bidders send $h(bid, r, r')$
- At deadline, government publishes all commitments to bids
- Then participants publish bid and r'