Co-evolution of networks and opinions

Petter Holme

KTH, CSC, Computational Biology

November 4, 2008, DIMACS

http://www.csc.kth.se/~pholme/
Co-evolution of networks and opinions

PETTER HOLME

Phase transitions in social systems?

Co-evolution of networks and opinions

Validation

Outline

dynamics of the network

dynamics on the network
Co-evolution of networks and opinions

PETTER HOLME

phase transitions in social systems?

coevolution of networks and opinions

validation

outline

dynamics on the network
friendships, trust
business contacts

dynamics of the network
opinions, information
disease, religion, norms
outline

- phase transitions in social systems?
- our models
- verify empirically / experimentally
- what can we learn?
phase transitions in social systems?

our models

verify empirically / experimentally

what can we learn?
Co-evolution of networks and opinions

Petter Holme

phase transitions in social systems?

our models

verify empirically / experimentally

what can we learn?
Co-evolution of networks and opinions

Petter Holme

Outline

- Phase transitions in social systems?
- Our models
- Verify empirically / experimentally
- What can we learn?
Co-evolution of networks and opinions

PETTER HOLME

phase transitions in social systems?
our models
verify empirically / experimentally
what can we learn?
Co-evolution of networks and opinions

PETTER HOLME

Phase transitions in social systems?

coevolution of networks and opinions

validation

phase transitions

quantity describing system

system’s environment
... in social systems?

- quantities describing the system — census statistics, election results, ...
- parameters describing the environment (should be “the same” for all the agents) — gas price, ...
- does social systems fit this framework?
- phase transitions can be categorized by their “critical exponents”, which depends only on symmetries in the system (not boundary conditions, dynamic properties, etc.)
Co-evolution of networks and opinions

Petter Holme

Co-evolution of networks and opinions

phase transitions in social systems?

coevolution of networks and opinions

validation

... in social systems?

- quantities describing the system — census statistics, election results, ...
- parameters describing the environment (should be “the same” for all the agents) — gas price, ...
- does social systems fit this framework?
- phase transitions can be categorized by their “critical exponents”, which depends only on symmetries in the system (not boundary conditions, dynamic properties, etc.)
... in social systems?

- quantities describing the system — census statistics, election results, ...

- parameters describing the environment (should be “the same” for all the agents) — gas price, ...

- does social systems fit this framework?

- phase transitions can be categorized by their “critical exponents”, which depends only on symmetries in the system (not boundary conditions, dynamic properties, etc.)
... in social systems?

- quantities describing the system — census statistics, election results, ...
- parameters describing the environment (should be “the same” for all the agents) — gas price, ...
- does social systems fit this framework?
- phase transitions can be categorized by their “critical exponents”, which depends only on symmetries in the system (not boundary conditions, dynamic properties, etc.)
... in social systems?

- quantities describing the system — census statistics, election results, ...
- parameters describing the environment (should be “the same” for all the agents) — gas price, ...
- does social systems fit this framework?
- phase transitions can be categorized by their “critical exponents”, which depends only on symmetries in the system (not boundary conditions, dynamic properties, etc.)
the idea

- Opinions spread over social networks.
- People with the same opinion are likely to become acquainted.
- We try to combine these points into a simple model of simultaneous opinion spreading and network evolution.
the idea

- Opinions spread over social networks.
- People with the same opinion are likely to become acquainted.
- We try to combine these points into a simple model of simultaneous opinion spreading and network evolution.

- Opinions spread over social networks.
- People with the same opinion are likely to become acquainted.
- We try to combine these points into a simple model of simultaneous opinion spreading and network evolution.

- Opinions spread over social networks.
- People with the same opinion are likely to become acquainted.
- We try to combine these points into a simple model of simultaneous opinion spreading and network evolution.
Co-evolution of networks and opinions

PETTER HOLME

phase transitions in social systems?
coevolution of networks and opinions
validation

the voter model

choose one vertex randomly
Co-evolution of networks and opinions

Co-evolution of networks and opinions

Petter Holme

Phase transitions in social systems?

Co-evolution of networks and opinions

Validation

The voter model

copy the opinion of a random neighbor
Co-evolution of networks and opinions

PETTER HOLME

phase transitions in social systems?

coevolution of networks and opinions
validation

the voter model

and so on . . .
Co-evolution of networks and opinions

PETTER HOLME

Phase transitions in social systems?

coevolution of networks and opinions

validation

the voter model

and so on . . .
Co-evolution of networks and opinions

PETTER HOLME

Phase transitions in social systems?

Co-evolution of networks and opinions

Validation

The voter model

and so on . . .
Co-evolution of networks and opinions

PETTER HOLME

Validation of the voter model

phase transitions in social systems?

coevolution of networks and opinions

and so on . . .
acquaintance dynamics: precepts

- People of similar interests are likely to get acquainted.
- The number of edges is constant.
People of similar interests are likely to get acquainted.
The number of edges is constant.
acquaintance dynamics: precepts

- People of similar interests are likely to get acquainted.
- The number of edges is constant.
acquaintance dynamics

Co-evolution of networks and opinions

PETTER HOLME

phase transitions in social systems?

coevolution of networks and opinions

validation
choose one vertex randomly
acquaintance dynamics

rewire an edge to a vertex w same opinion
acquaintance dynamics

and so on . . .
acquaintance dynamics

and so on . . .
acquaintance dynamics

Co-evolution of networks and opinions

Petter Holme

Phase transitions in social systems?

Co-evolution of networks and opinions

Validation

and so on . . .
acquaintance dynamics

and so on . . .
Start with a random network of N vertices $M = \bar{k}N/2$ edges and $G = N/\gamma$ randomly assigned opinions.

Pick a vertex i at random.

With a probability ϕ make an acquaintance formation step from i.

. . . otherwise make a voter model step from i.

If there are edges leading between vertices of different opinions—iterate from step 2.
Start with a random network of N vertices $M = \bar{k}N/2$ edges and $G = N/\gamma$ randomly assigned opinions.

2. Pick a vertex i at random.

3. With a probability ϕ make an acquaintance formation step from i.

4. . . . otherwise make a voter model step from i.

5. If there are edges leading between vertices of different opinions—iterate from step 2.
model definition

1. Start with a random network of \(N \) vertices \(M = \overline{k}N/2 \) edges and \(G = N/\gamma \) randomly assigned opinions.

2. Pick a vertex \(i \) at random.

3. With a probability \(\phi \) make an acquaintance formation step from \(i \).

4. . . . otherwise make a voter model step from \(i \).

5. If there are edges leading between vertices of different opinions—iterate from step 2.
model definition

1. Start with a random network of N vertices $M = \bar{k}N/2$ edges and $G = N/\gamma$ randomly assigned opinions.

2. Pick a vertex i at random.

3. With a probability ϕ make an acquaintance formation step from i.

4. . . . otherwise make a voter model step from i.

5. If there are edges leading between vertices of different opinions—iterate from step 2.
Co-evolution of networks and opinions

PETTER HOLME

phase transitions in social systems?

coevolution of networks and opinions

validation

model definition

1. Start with a random network of N vertices $M = \bar{k} N / 2$ edges and $G = N / \gamma$ randomly assigned opinions.
2. Pick a vertex i at random.
3. With a probability ϕ make an acquaintance formation step from i.
4. . . . otherwise make a voter model step from i.
5. If there are edges leading between vertices of different opinions—iterate from step 2.
model definition

1. Start with a random network of N vertices $M = \bar{k}N/2$ edges and $G = N/\gamma$ randomly assigned opinions.
2. Pick a vertex i at random.
3. With a probability ϕ make an acquaintance formation step from i.
4. . . . otherwise make a voter model step from i.
5. If there are edges leading between vertices of different opinions—iterate from step 2.
Co-evolution of networks and opinions

PETTER HOLME

phase transitions in social systems?

coevolution of networks and opinions

validation

phases

low ϕ—one dominant cluster
Co-evolution of networks and opinions

PETTER HOLME

phase transitions in social systems?

coevolution of networks and opinions

validation

phases

high ϕ—clusters of similar sizes
quantities we measure

- The relative largest size S of a cluster (of vertices with the same opinion).
- The average time τ to reach consensus.
quantities we measure

- The relative largest size S of a cluster (of vertices with the same opinion).
- The average time τ to reach consensus.
quantities we measure

- The relative largest size S of a cluster (of vertices with the same opinion).
- The average time τ to reach consensus.
Co-evolution of networks and opinions

PETTER HOLME

phase transitions in social systems?

devolution of networks and opinions
validation

Cluster size distribution

\[P(s) \]

\[s = 10^{-4} \]

\[s = 10^{-6} \]

\[s = 10^{-8} \]

\[s = 0.01 \]

\[\phi = 0.04 \]

\[\phi = 0.458 \]

\[\phi = 0.96 \]
Assume a critical scaling form:

\[
S = N^{-a} F\left(N^b (\phi - \phi_c) \right)
\]
finding the phase transition

Co-evolution of networks and opinions

PETTER HOLME
phase transitions in social systems?
coevolution of networks and opinions
validation
Co-evolution of networks and opinions

PETTER HOLME

phase transitions in social systems?

devolution of networks and opinions

validation

finding the phase transition

\[S_1 N^{-a} = \frac{N}{N_b} \left(\frac{\phi - \phi_c}{N^b} \right) \]

\[a = 0.61 \pm 0.05, \ \phi_c = 0.458 \pm 0.008, \ \beta = 0.7 \pm 0.1 \]

random graph percolation: \(a = b = 1/3 \)
finding the phase transition

\[S_1 N^{-a} \]

\[(\phi - \phi_c) N^b \]

\[a = 0.61 \pm 0.05, \phi_c = 0.458 \pm 0.008, b = 0.7 \pm 0.1 \]

random graph percolation: \(a = b = 1/3 \)
Co-evolution of networks and opinions

Petter Holme

Phase transitions in social systems?

Co-evolution of networks and opinions

Validation

Finding the phase transition

$a = 0.61 \pm 0.05$, $\phi_c = 0.458 \pm 0.008$, $b = 0.7 \pm 0.1$

Random graph percolation: $a = b = 1/3$
Co-evolution of networks and opinions

PETTER HOLME

phase transitions in social systems?

coevolution of networks and opinions

validation

Dynamic critical behavior
conclusions

- We have proposed a simple, non-equilibrium model for the coevolution of networks and opinions.
- The model undergoes a second order phase transition between: One state of clusters of similar sizes. One state with one dominant cluster.
- The universality class is not the same as random graph percolation.
- In society, a tiny change in the social dynamics may cause a large change in the diversity of opinions.
conclusions

- We have proposed a simple, non-equilibrium model for the coevolution of networks and opinions.
- The model undergoes a second order phase transition between: One state of clusters of similar sizes. One state with one dominant cluster.
- The universality class is not the same as random graph percolation.
- In society, a tiny change in the social dynamics may cause a large change in the diversity of opinions.
conclusions

- We have proposed a simple, non-equilibrium model for the coevolution of networks and opinions.
- The model undergoes a second order phase transition between: One state of clusters of similar sizes. One state with one dominant cluster.
- The universality class is not the same as random graph percolation.
- In society, a tiny change in the social dynamics may cause a large change in the diversity of opinions.
conclusions

- We have proposed a simple, non-equilibrium model for the coevolution of networks and opinions.
- The model undergoes a second order phase transition between: One state of clusters of similar sizes. One state with one dominant cluster.
- The universality class is not the same as random graph percolation.
- In society, a tiny change in the social dynamics may cause a large change in the diversity of opinions.
conclusions

- We have proposed a simple, non-equilibrium model for the coevolution of networks and opinions.
- The model undergoes a second order phase transition between: One state of clusters of similar sizes. One state with one dominant cluster.
- The universality class is not the same as random graph percolation.
- In society, a tiny change in the social dynamics may cause a large change in the diversity of opinions.
Co-evolution of networks and opinions

PETTER HOLME

phase transitions in social systems?

coevolution of networks and opinions

validation

an equilibrium model
an equilibrium model
Co-evolution of networks and opinions

Petter Holme

Phase transitions in social systems?

Coevolution of networks and opinions

Validation
Co-evolution of networks and opinions

PETTER HOLME

phase transitions in social systems?

coevolution of networks and opinions

validation
Co-evolution of networks and opinions

PETTER HOLME

phase transitions in social systems?

coevolution of networks and opinions

validation

methodology of mechanistic models

Co-evolution of networks and opinions

model capturing behavior of the individual

macroscopic observations consistent with

behavior of the individual
thank you!

Mark Newman
Zhi-Xi Wu

Gourab Ghoshal
Andreas Grönlund
Luís Enrique Correa da Rocha
Fredrik Liljeros