Highly-Functional Highly-Scalable Search on Encrypted Data

Hugo Krawczyk, IBM

Joint work with IBM-UCI teams:
David Cash, Sky Faber, Joseph Jaeger, Stas Jarecki, Charanjit Jutla, Quan Nguyen, Marcel Rosu, Michael Steiner

DIMACS Big Data Workshop - 12/15/2015
Your data is in the cloud. Do you know where your data is?
The Data-in-the-Cloud Conundrum

- Your data in the cloud: email, backups, financial/medical info, etc.
- Data is visible to the cloud and to anyone with access (legitimate or not)
 - At best, data is encrypted “at rest” with the server’s keys and decrypted upon use
- Q: Why not encrypt it with your (data owner) own keys?
- A: Utility, e.g. allow the cloud to search the data (e.g. gmail)
- Can we keep the data encrypted and search it too?

Can I eat the cake and have it too?
SSE: Searchable Symmetric Encryption

- Owner outsources data to the cloud: Pre-processes data, stores the processed and encrypted data at the cloud server
 - Keeps a small state (e.g. a cryptographic key)
 - Later, sends encrypted queries to be searched by the server
 - e.g. return all emails with Alice as Recipient, not sent by Bob, and containing at least two of the words {searchable, symmetric, encryption}

- Goal: Server returns the encrypted matching documents w/o learning the plaintext query or plaintext data
 - Some forms of statistical leakage allowed: data access patterns (e.g. repeated retrieval, size info), query patterns (e.g., repeated queries), etc.
 - Plaintext data/queries never directly exposed, but statistical inference possible

- Protects against break-ins, cloud insiders, even “surveillance attacks”
With SSE...

The cloud cannot disclose your data... not even at gun point!
SSE before 2013

- Generic tools: FHE, ORAM, PIR
 - very expensive,
 - great* security
 - *assumes all raw data is ORAM-encrypted, o/w leakage via access patterns

- Deterministic + order preserving encryption: e.g. CryptDB [PRZB'11]
 - Practical but significant leakage (see Seny Kamara’s talk)
Deterministic and order preserving

<table>
<thead>
<tr>
<th>Name</th>
<th>Lastname</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaine</td>
<td>Samuels</td>
<td>24</td>
</tr>
<tr>
<td>Mary</td>
<td>Stein</td>
<td>37</td>
</tr>
<tr>
<td>Jim</td>
<td>Stein</td>
<td>81</td>
</tr>
<tr>
<td>John</td>
<td>Sommers</td>
<td>3</td>
</tr>
<tr>
<td>Mary</td>
<td>Williams</td>
<td>17</td>
</tr>
<tr>
<td>John</td>
<td>Garcia</td>
<td>43</td>
</tr>
<tr>
<td>John</td>
<td>Gould</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lastname</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge5$#u</td>
<td>Q*6sh#</td>
<td>223</td>
</tr>
<tr>
<td>E89(%y</td>
<td>2@#3Br</td>
<td>340</td>
</tr>
<tr>
<td>2Tr^#7</td>
<td>2@#3Br</td>
<td>736</td>
</tr>
<tr>
<td>qM@9*h</td>
<td>gYv6%t</td>
<td>34</td>
</tr>
<tr>
<td>E89(%y</td>
<td>X%3oL7</td>
<td>160</td>
</tr>
<tr>
<td>qM@9*h</td>
<td>wnM7#1</td>
<td>308</td>
</tr>
<tr>
<td>qM@9*h</td>
<td>8vy8$Z</td>
<td>475</td>
</tr>
</tbody>
</table>
SSE before 2013

- **Generic tools**: FHE, ORAM, PIR
 - very expensive,
 - great* security
 - *assumes all raw data is ORAM-encrypted, o/w leakage via access patterns

- **Deterministic + order preserving encryption**: e.g. CryptDB [PRZB’11]
 - Practical but significant leakage (see Seny Kamara’s talk)

- **Name of the game**: Security-Functionality-Performance Tradeoffs
SSE before 2013 (cont.)

- Dedicated SSE solutions:
 - Single-Keyword Search (SKS) [SWP’00, Goh’03, CGKO’06, ChaKam’10, …]
 - “privacy optimal” (if we don’t count encrypted query results as leakage)
 - Conjunctions: Very little work
 - naive (n single-keyword searches),
 - GSW’04: structured-data, LINEAR in DB, communication-pairings tradeoff

- Practicality limitations
 - single-keyword only support, limited support for dynamic data
 - non-scalable design (esp. adaptive solutions), no I/O support for large DBs
 - little experimentation/prototyping
This work: Extends SSE in 4 dimensions

1. Functionality (well beyond single-keyword search):
 - Conjunctions
 - General Boolean expressions (on keywords)
 - Range queries
 - Substring/wildcard queries, phrase queries

 Search on structured data (relational DBs) as well as free text

2. Scalability:
 - Terabyte-scale DB, millions documents/records, billions indexed document-keyword pairs
 - Dynamic data
 - Validated implementation, tested by a third party (IARPA, Lincoln Labs)

3. Provability: “imperfect security” but with provable leakage profiles (establishing upper bounds on leakage), well-defined adversarial models
This work: extends SSE in 4 dimensions

4. New application settings and trust models

- **Multiple clients**: Data owner D outsources Encrypted DB to cloud; clients run queries at the cloud but *only for queries authorized by D*
 - Leakage to cloud as in basic SSE, client only learns documents matching authorized queries (policy-based authorization enforced by data owner)

- **Blind authorization**: As above but authorizer enforces policy without learning the queried values (*we call it “Outsourced Symmetric PIR”*)
 - Assumes non-collusion between cloud and data owner

- **Note**: multi-reader, single-writer system (no public key encryption)
Example Applications

Example: Hospital outsources DB, provides access to clients (doctors, administrators, insurance companies, etc.)

- Policy-based authorization on a client/query-basis
- Hospital doesn’t need to learn the query, only (blindly) enforce policy
 - Good for security, privacy, regulations

Warrant scenario (extended 4-party setting)

- Judge provides warrant for a client C (e.g. FBI) to query a DB
- DB owner enables access but only to queries allowed by judge
- DB owner does not learn warrant content or queries
- Client C (e.g., FBI) gets the matching documents for the allowed queries and nothing else
Large-Scale & Functional Implementation

- Support for arbitrary Boolean queries on all 3 (extended) SSE models
- Validated on synthetic census data: 10Terabytes, 100 million records, > 100,000,000,000 = 10^{11} indexed record-keyword pairs!
 - Equivalent to a DB with one record for each American household and 1000 keywords in each record and any boolean query (including textual fields)
 - Smaller DB's: Enron email repository, ClueWeb (>> English Wikipedia)
- Support for range queries, substring/wildcards, phrase queries (5x perf. cost)
- Dynamic data: Supports additions, deletions and modifications of records
Scalability

- Preprocessing scales linearly w/ DB size (minutes-days for above DBs)
 - Careful data structure, crypto and I/O optimizations
 - Can benefit on any improvement on single-keyword search
- Search proportional to # documents matching the least frequent term: \(w_1 \land B(w_2, \ldots, w_n) \)
 - Single round to retrieve matching document indexes (tokens from client to server, matching indices back; retrieve encrypted documents)
 - Query response time: Competitive w/ plaintext queries on indexed DB

4 seconds: fname='CHARLIE' AND sex='Female' AND NOT (state='NY' OR state='MA' OR state='PA' OR state='NJ) on 100M records/22Billion index entries US-Census DB
Crypto Design-Engineering Synergy

- Major effort to build I/O-friendly data structures
 - Critical decision: Do not design for RAM-resident data structures (it severely limits scalability)
 - Challenge: need to avoid random access (e.g., avoid Bloom filters on disk)
 - Need randomized data structures to reduce leakage and need structured ones to improve I/O performance (locality of access)

- Cryptographic index based on elliptic curve cryptography (optimized for very fast exponentiation, esp. with same-base)
 Typically: I/O and network latency dominate cost
 - On a midsize storage system: ~300 IOPS (I/O Operations Per Second)
 - ~1000 exponentiations per random I/O access (133 w/o same-base optimization)

- Data encryption uses regular symmetric crypto (e.g., AES)
Security: The challenge of being imperfect

- Good news: Semantic security for data; no deterministic or order preserving data encryption
- But: Security-Performance trade-offs → Leakage to server
 - Leakage in the form of access patterns to retrieved data and queries
 - Data is encrypted but server can see intersections b/w query results (e.g. identify popular document, intersection b/w results of two ranges, etc.)
 - Server learns query function (not values/attrib's); identifies repeated query
 - Additional specific leakage (more complex functions of DB and query history):
 - E.g. we leak $|\text{Doc}(w_1)|$ and in query $w_1 \land w_2 \land \ldots \land w_n$ we leak $|\text{Doc}(w_1 \land w_i)|$
 - E.g. the server learns if two queries have the same w_1 (other terms are hidden)
- Leads to statistical inference based on side information on data (effect depends on application), masking techniques may help
Security: The challenge of being imperfect

- Security proofs: Formal model and precise provable leakage profile
 - Leakage profile: provides upper bounds on what’s learned by the attacker
 - Security modeling and definitions follow simulation paradigm [CGKO, CK]
- Syntactic leakage vs “semantic leakage”
 - Need to assess on an application basis and relative to a-priori knowledge
 - For example, formal leakage proven even if attacker can choose data and queries - but in practice, in this case, semantic leakage will be substantial
 - Yet, we expect in many cases to provide meaningful (if imperfect) security (in particular, relative to property-preserving solutions)

- Detour: Is CryptDB sufficient in practice? Who is the attacker? Enough to not being the weakest link? What do regulations say?
Security Formalism (adversarial server)

- Based on the simulation-based definitions given for SKS [CGKO,CK].
- There is an attacker E (acting as the server), a simulator Sim and a leakage function \(L(DB, \text{queries}) \):
 - Real: Attacker E chooses DB and gets the pre-processed encrypted DB, then interacts with client on adaptively chosen queries
 - Ideal: Attacker E chooses DB and queries (adaptively), E gets Sim(L(DB)) and Sim(L(DB,queries))

A SSE scheme is \textit{semantically secure with leakage L} if for all attackers E, there is a simulator Sim such that the views of E in both experiments are indistinguishable

\(\rightarrow \) Server learns nothing beyond the specified leakage L even if it knows (and even if it chooses \textit{adaptively}) the plaintext DB and queries
Basic ideas

- Focus on conjunctions \(w_1, \ldots, w_n \) (will be extended to Boolean queries)

1. **Choose the least frequent** conjunctive term, say \(w_1 \) ("s-term"), find encrypted indexes of documents containing \(w_1 \) (w/o revealing \(w_1 \))
 - Pre-computed encrypted index stored at Eddie (part of EDB):
 \[\forall w, \text{Enc}(w) \rightarrow \text{Enc}(\text{ind}_1), \text{Enc}(\text{ind}_2), \ldots, \text{Enc}(\text{ind}_k) \]

2. **For each** \(w_j \) and \(\text{ind}_i \), check if \(w_j \) appears in \(\text{ind}_i \).
 - Uses an “oracle” that given \(\text{Enc}(\text{ind}) \) and \(\text{Enc}(w) \) says if keyword \(w \) appears in document \(\text{ind} \) (without revealing \(\text{ind} \) or \(w \))
 - Oracle implemented as a function \(H(\text{ind},w) \) and a set \(\text{Hset} \) stored at the server of all values \(H(\text{ind},w) \) such that \(w \) appears in record \(\text{ind} \)
 - Server computes \(H(\text{ind},w) \) jointly (and “non-interactively”) with client; server does not learn \(w \) or \(\text{ind} \) (it is encrypted), client learns nothing
 - computation based on DH-based Oblivious PRF
Columbia/Bell Labs Solution (Blind Seer)

- Parallel work: Same IARPA project – papers at [Oakland’14, 15]
- Elegant solution based on Bloom filter trees with Garbled Yao for privacy and authorization
 - Conceptually simpler than ours
 - Uses MPC techniques (Yao) instead of homomorphic operations
 - Less scalable: Bloom filters are inherently random access → DB sizes limited by the size of RAM
 - Single client
 - Incomparable leakage (e.g., Bloom filter path vs. w_1-related leakage)
Research Questions

- Leveraging other tools (carefully): MPC, ORAM, homomorphic encryp’n
- Fundamental limits (leakage-computation tradeoffs), e.g.:
 - leakage from returned ciphertexts (ORAM helps but at significant cost)
 - Frequency of w_1 (least frequent term) (reduction from 3SUM)
- “Semantic leakage”: Proving formal leakage is nice but how bad is it for a given particular application, what forms of masking can help?
 - Can we have a theory to help us reason about it (cf. differential privacy)?
 - A theory of leakage composition? Guidance for masking techniques
 - Attacks welcome! (Also easier to get accepted to conferences 😊)
- Characterizing privacy-friendly plaintext search algorithms/data str.
- A more complete SQL query set (esp. joins)
Summary

- Great progress relative to work on single-keyword single-client SSE
 - Rich queries: General Boolean queries (structured data, free text),
 Plus: range, substring, wildcards, phrase, proximity
 - Huge DBs: 10 TB, 100M records, 10^{11} indexed keyword-document pairs
 - EDB creation linear in DB size, queries competitive with MySQL
 - Single- and Multi-Client models, policy-based delegation of queries
 - Authorization w/o learning query ("Outsourced Symmetric PIR")
 - Privacy, insider security, surveillance protection, warrant enforcement

- Imperfect security: Leakage from access- and query-patterns, but well defined leakage profiles, and simulation-based adaptive security

- Many challenging theoretical and engineering questions
 - Going for practice? Don’t forget simplicity, engineering and… proofs!
Join the (multi) Party...

- An exciting & large space to explore with many many research opportunities!

- ... and many practical applications
 - Very timely given cloud migration, explosion of private info, and strong attackers (including surveillance, espionage, mafia, and just hackers...)

- An opportunity for sophisticated crypto in the real world?
Thanks!

- Crypto’2013: Boolean search, single client eprint.iacr.org/2013/169
- CCS’2013: Multi-client, Blind authorization eprint.iacr.org/2013/720
- NDSS’2014: Dynamic data, implementation eprint.iacr.org/2014/853
- ESORICS 2015: Range, Substrings, Wildcards, Phrases 2015/927