Games in Networks: the price of anarchy, stability and learning

Éva Tardos
Cornell University
Why care about Games?

Users with a multitude of diverse economic interests sharing a Network (Internet)
 • browsers
 • routers
 • servers

Selfishness:
 Parties deviate from their protocol if it is in their interest

Model Resulting Issues as Games on Networks
Main question: Quality of Selfish outcome

Well known: Central design can lead to better outcome than selfishness.

e.g.: Prisoner Dilemma

Question: how much better?

Our Games

- Routing and Network formation: Users select paths that connect their terminals to minimize their own delay or cost
Example: Routing Game

- Traffic subject to congestion delays
- cars and packets follow shortest path

Congestion games: cost depends on congestion includes many other games
Computer Science Games

• **Routing:**
 - Routers choose path for packets though the Internet

• **Bandwidth Sharing:**
 - Routers share limited bandwidth between processes

• **Facility Location:**
 - Decide where to host certain Web applications

• **Load Balancing**
 - Balancing load on servers (e.g. Web servers)

• **Network Design:**
 - Independent service providers building the Internet
Congestion sensitive load balancing

Routing network:

\[\ell_e(x) = x \]

Load balancing:

\[\ell_e(x) = x \]

Cost/Delay/Response time as a fn of load:

x unit of load → causes delay \(\ell_e(x) \)

A congestion game
Model of Routing Game

- A directed graph $G = (V,E)$
- Source-sink pairs s_i, t_i for $i=1,..,k$
- User i selects path P_i for traffic between s_i and t_i for each $i=1,..,k$

For each edge e a latency function $\ell_e(\cdot)$

Latency increasing with congestion
Cost-sharing: a Coordination Game

- jobs $i=1,..,k$
- For each machine e a cost function $\ell_e(\cdot)$
 - E.g. cloud computing
- Cost decreasing with congestion (decreasing marginal cost)

$$\ell_e(x) = \frac{c_e}{x}$$
Goal’s of the Game

Personal objective: minimize

$$\ell_p(x) = \text{sum of latencies or costs of edges along the chosen path } P \text{ (with respect to flow } x)$$

Overall objective:

$$C(x) = \text{total latency/cost of a flow } x: = \Sigma_p x_p \cdot \ell_p(x)$$

delay summed over all paths used, where x_p is the amount of flow carried by path P.
What is Selfish Outcome (1)?

Traditionally: **Nash equilibrium**
- Current strategy “best response” for all players (no incentive to deviate)

Theorem [Nash 1952]:
- Always exists if we allow randomized strategies

Price of Anarchy: \[
\frac{\text{cost of worst (pure) Nash}}{\text{“socially optimum” cost}}
\]

Price of Stability: worst \rightarrow best
Selfish Outcome (2)?

• Does natural behavior lead to no Nash?
• Which Nash?
• Finding Nash is hard in many games...
• What is natural behavior?
 - Best response?
 - Learning?
Games with good Price of Anarchy/Stability

- **Routing and load balancing**: routers choose path
 [Koutsoupias-Papadimitriou '99], [Roughgarden-Tardos Ø2], etc
- **Network Design**:
 [Fabrikant et al'03], [Anshelevich et al'04], etc
- **Facility location Game**
 Placing servers (e.g. Web) to extract income
 [Vetta '02] and [Devanur-Garg-Khandekar-Pandit-Saberi-Vazirani’04]
- **Bandwidth Sharing**:
 routers decide how to share limited bandwidth between many processes [Kelly'97, Johari-Tsitsiklis 04]
Example: Atomic Game (pure Nash)

n jobs and n machines with identical $\ell_e(x)$ functions

Pure Nash: each job selects a different machine, load = $\ell_e(1)$:

Optimal...

Load balancing:

jobs

machines $\ell_e(x)$
Example: Atomic Game (mixed Nash)

\(n\) jobs and \(n\) machines with identical \(e_e(x)\) functions

Mixed Nash: e.g. each job selects uniformly random:

With high prob.

\[\text{max load} \sim \log n / \log \log n \]

\(\Rightarrow\) expected load is approx

\[\sim e_e(1) + e_e(\log n) / n \]

a lot more when \(e_e(x)\) grows fast
Example: Cost-sharing (mixed vs pure)

n jobs and n machines with identical costs c_e/x functions

Pure Nash: select one machine to use. Total cost c_e

Mixed Nash: e.g. each job selects uniformly random:

With high prob.,

expected cost $\sim \Omega(n \cdot c_e)$

$\Omega(n)$ times more than pure Nash
Learning?

Iterated play where users update play based on experience

Traditional Setting: stock market

m experts N options

Goal: can we do as well as the best expert?

Regret = long term average cost - average cost of single best strategy with hindsight.
Learning and Games

Goal: can we do as well as the best expert?
- As the single stock in hindsight?

Focus on a single player:
experts = strategies to play
Learn to play the best strategy with hindsight?

Best depends on others
A Natural Learning Process

Iterated play where users update probability distributions based on experience

Example: Multiplicative update (Hedge) strategies 1, ..., n

Maintain weights $w_e \geq 0$

probability $p_e \sim w_e$ all e

Update w_e to $w_e (1 - \varepsilon)^{\text{cost}(e)}$

$\alpha = 1 - \varepsilon$ think of $\varepsilon \sim$ learning rate
Learning and Games

Regret = long term average cost - average cost of single best strategy with hindsight.

Nash = all players have no regret

Hart & Mas-Colell: general games → Long term average play is (coarse) correlated equilibrium

Correlated? Correlate on history of play
(Coarse) correlated equilibrium

Coarse correlated equilibrium: probability distribution of outcomes such that for all players expected cost \leq exp. cost of any fixed strategy

Correlated eq. & players independent = Nash

Learning:
Players update independently, but correlate on shared history
Example Correlated Equilibrium: Load Balancing

\[\text{n jobs and n machines with identical } \ell_e(x) \text{ functions} \]
- Select a k jobs and 1 machine at random and send all k jobs to the one machine.
- Send all remaining jobs to different machines

Correlated equilibrium if two costs same

- Correlated play cost: \(\sim \ell_e(1) + \frac{k}{n} \ell_e(k) \)
- Fixed other strategy cost \(\sim \ell_e(2) \)

When \(\ell_e(x) \) costs balance when \(k=\sqrt{n} \): bad congestion
What are learning outcomes?

Blum, Even-Dar, Ligett’06: In non-atomic congestion games, Routing without regret → learning converge to Nash equilibria 2006.

What about atomic games?

Hope: learning will not make users coordinate on bad equilibria.
Main question: Quality of Selfish outcome

Answer: depends on which learning...

Theorem: \(\forall \) correlated equilibrium is the limit point of no-regret play

Intelligent designer algorithm is no regret:

- Follow the designed sequence as long as all other players do.

Hope: natural learning process (Hedge) coordinates on good quality solutions
Quality of learning outcome

Roughgarden 2009

• In congestion games with any class of latency functions the worst price equilibrium same as quality loss in worst pure equilibrium

Yet in load balancing games...

R. Kleinberg-Piliouras-Tardos 2009

• natural learning process converges to pure Nash in almost all congestion games
Summary

We talked about Congestion Games (Routing)

- Learning (via Hedge algorithm) results in a weakly stable fixed point
- Almost always \Rightarrow weakly stable = pure Nash

Many natural questions:

- Other learning methods?
- Outcome of natural learning in other games?

Note: finding Nash can be hard

- what does learning converge to?