A survey on approximating graph spanners

Guy Kortsarz, Rutgers Camden
Unweighted undirected k-spanners

Peleg and Ullman 1987

- Input: An undirected graph $G(V,E)$ and an integer k
- Required: a subgraph G' so that for every u and $v \in V$:

$$\frac{\text{Dist}_{G'}(u,v)}{\text{Dist}_G(u,v)} \leq k$$

DATA COMPRESSION
An example of a 2-spanner

- The original graph:
A 2-spanner

- Easy to check the new distance for every pair is at most twice the original distance.
Why dealing with edges is enough?
Why dealing with edges is enough?

Distance 3 becomes $3k$
An alternative definition

- Find a subgraph $G'(V,E')$ so that for every edge e in $E-E'$, adding e must close a cycle of size at most $k+1$.
- More general variants in which the above is not true.
- The case of general lengths over the edges.
- Then a k-spanner must be a k-spanner with respect to weighted distance.
Applications

- In geometry.
- **Small routing tables:** spanners have less edges. Thus smaller tables. But not much larger distance.
- Synchronizers: make non synchronized distributed computation, synchronized.
- Parallel distributed and streaming algorithms.
- Distance oracles. Handle queries about distance between two vertices quick by preprocessing.
- Property testing
- Minimum time broadcast.
There is a difficulty. Unlike $k \geq 3$ there are not necessarily 2 spanners with few edges.

The only 2-spanners of a complete bipartite graph is the graph itself.

Like in 2-SAT and 2-Coloring and other problems, 2-spanners is different than the rest.
For k at least 3 there are spanners with few edges

- As we shall see: 3-spanners with $O(n\sqrt{n})$ edges always exist, and the same goes for 4-spanners. And this is tight.
- The larger k is, the smaller is the upper bound on the number of edges in the best spanner.
- Remarkable fact: maximum number of edges in a graph with girth g not known.
- Maybe for 40 years the upper and lower bound are quite far!
Heaviest edge on a short cycle

For example a 4-spanner, only the edge 9 can be removed, while maintaining a 4-spanner.
A generalization of the Kruskal algorithm:

• Sort the edges of the graph in increasing weights.
 \[c(e_1) \leq c(e_2) \leq c(e_3) \leq \ldots \leq c(e_m) \]

• Go over all edges from small cost to large.

• For the next edge \(e_i \), if the edge does not close a cycle of length at most \(k+1 \) with previously added edges, add \(e_i \) to \(G' \) or else \(i = i+1 \).

• This algorithm is due to I. Althofer, G. Das, D. Dobkin, D. Joseph, and J. Soares. 1993
The resulting graph is a k-spanner

- If an edge e is missing, then by construction, this edge is the most heavy edge in a cycle of length at most $k+1$.
- This is because we go over edges in non-decreasing costs.
- If we reach a cycle of size $k+1$, then it means that previous edges were not removed.
- This implies that e is the largest edge in a cycle of length at most $k+1$ and it is safe to remove it.
We observe that the resulting graph has girth at least \(k+2 \).

The girth is the size of the minimum simple cycle.

Observe that when we reach the largest edge \(e \) of a cycle with at most \(k+1 \) edges, this edge will be removed.

Therefore, there are no \(k+1 \) size or smaller cycles.

Graphs with large girth have “few” edges.
Example: graphs with girth 5 and 6

- We show that graphs with girth 5 and 6 have \(O(n \cdot \sqrt{n})\) edges.
- First remove all vertices of degree strictly smaller than \(m/n\).
- Here \(m\) is the number of edges and \(n\) is the number of vertices.
- Since we have removed at most \(n\) vertices and each vertex removes less than \(m/n\) edges it is clear that the resulting graph is not empty.
Two layers BFS graph

All the vertices seen below are distinct as otherwise there is a cycle of length at most 4.

\[(m/n) - 1 \quad \ldots \quad (m/n) - 1\]

\[
\begin{array}{c}
\ldots \\
m/n
\end{array}
\]
Number of edges

- This implies that \(\frac{m}{n}(\frac{m}{n}-1) \leq n \), or \(\frac{m^2}{n^2} - \frac{m}{n} \leq n \)
- As \(\frac{m}{n} < n \) we get that \(\frac{m^2}{n^2} < 2n \) or \(m^2 < 2n^3 \)
- Thus \(m = O(n \sqrt{n}) \)
- A matching lower bound. A graph of girth 6 that has \(\Omega(n \sqrt{n}) \) edges.
- A projective plane for our needs is a bipartite graph with \(n \) vertices on each side and degree \(\Theta(\sqrt{n}) \) thus contains \(\Theta(n \sqrt{n}) \) edges.
- The main property: every pair of vertices in the same side share exactly 1 neighbor.
There could not be a cycle of size 4:

A cycle of length 4 implies that two vertices on the same side share two neighbors. Contradiction
Girth 6

- There could not be a cycle of size 4:

Therefore girth 6
General bounds on the minimum number of edges for a given girth

- It is known that there is always a $2k-1$ spanner with $O(n^{1+1/k})$ edges.
- Using this formula: 3-spanners needs $k=2$. This gives the correct and tight $O(n^* \sqrt{n})$ upper bound on the number of edges in a 3-spanner.
Approximating spanners

- There are only very few approximations.
- Length \(1\) arbitrary costs \(2\)-spanners.
- \(O(\log d)\) approximation with \(d\) the average degree for minimum cost \(2\)-spanners.
- As we shall see such an approximation does not exist for \(k \geq 3\).
An $O(\log(|E|/|V|))$ ratio for $k=2$ for arbitrary weight

- For a vertex v look at the graph induced by $N(v)$
- Find a densest subgraph $S(v)$ in $N(v)$
- Return the edges from v to $S(v)$ that is the most dense set over all v and iterate
The problem we need to solve is the densest subgraph

- Let $e(S), S \subseteq N(v)$ be the number of edges in the graph induced by S.
- This problem requires finding a subset of the vertices with maximum density $e(S)/|S|$ and can be solved exactly via flow. This implies an $O(\log d)$ ratio for d the average degree.
The problem we need to solve is the densest subgraph

- A faster algorithm, approximates the best density by 2 but gets $O(n)$ time and not flow time. Adds 2 to the ratio (so negligible).
- Very extensively cited in social networks. Almost always attribute the result to Charikar.
How hard is it to approximate spanners for \(k \geq 3 \)?

- **Strong hardness** is \(\exp(\log^{1-\varepsilon} n) \)
- **Weak hardness** is \((\log n)/k \)
- **K. 98. First hardness.** Weak hardness for \(w(e)=l(e)=1 \).
- **Tight for** \(k=2 \).
- **Later similar methods employed for hardness for** **Buy at Bulk.**

Elkin Peleg: Strong hardness for:

- 1) General length
- 2) Weights=1 and general length
- 3) Unit length, arbitrary weights, \(k \geq 3 \)
- 4) Basic but directed spanners.
Only basic spanners from now on

• From now on, edges have weights and lengths 1.
• Thus the results presented from now on are only for basic spanners.
• In fact giving a similar result for arbitrary weights already unknown for some of the problems in later slides.
• And none of the algorithms to follow work on general lengths.
A question posed in 1992

- Is undirected the basic spanner problem strongly hard?
- In ICALP 2012 Dinitz, K, Raz: \(k \geq 3\) is Labelcover-Hard (means only polynomial ratio is possible).

- Second important result: Labelcover with large girth is as hard as Labelcover
- Its rare (for me) to solve a 20 years old problem.
A technique employed for approximating directed Steiner Forest

The following situation:

LP flow at least \(\frac{1}{4} \) between every pair \(s,t \)

At most \(n^{2/5} \) vertices in every layer
An edge with large x_e

- Between every two layers there is at most $n^{4/5}$ edges.
- Let x_e be the largest capacity. Thus via every edge at most x_e flow unit pass from s to t.
- The total flow between s and t is at least $\frac{1}{4}$.
- Therefore $n^{4/5} \cdot x_e \geq \frac{1}{4}$
- Therefore there is an edge of value about $1/4n^{4/5}$
- Iterative rounding gives ratio $n^{4/5}$
Approximating directed spanners

- Krauthgamer and Dinitz 2012, employed (part of) our techniques to get an $n^{2/3}$ approximation for directed k-spanners. The techniques was (re)invented independently.

- Improvement: non iterative but randomized rounding gets about $n^{1/2}$ ratio. Very clever trick!

- Due to Berman, Bhattacharyya, Makarychev, Raskhodnikova, Yaroslavtsev. 2013.
Other results

- For $k=3$ they get ratio $n^{1/3}$ for the directed case. Note that even for undirected graphs $n^{1/2}$ is trivial but $n^{1/3}$ not.
- They also improve the result for Directed Steiner forest. The new best ratio is $n^{2/3}$.
- Can we show a better integrality gap for the natural LP?
- The answer is no.
• Ratio $n^{1/3}$ for $k=4$

• The ADDJ upper bound and the integrality gaps of the natural LP are not that far.

• Interesting proof: builds its own type of Min-Rep and uses the fact that Min-Rep is hard for large super girth several times.

• I would guess that the ratio of ADDJ will not be easily improved if at all.
Preservers

• The input contains a collection of pairs \(\{x, y\}\) and you want minimum edges \(G'\) so that the distance between every \(x, y\) is the same as in \(G\).

• A paper by Chlamtac, Dinitz, K, and Laekhanukit, SODA 2017.

• Ratio \(O(n^{3/5})\) approximation for preservers.

• There is a big problem. The inequality \(opt \geq n - 1\) does not hold.
How to overcome this

- The SODA 2017 paper introduced junction trees at the last stage.
- Junction trees are trees that connect many s,t pairs so that all paths from s,t for every pair goes via the same vertex r.
- Invented in relation to Buy at Bulk.
- Namely when the relative cost of items goes down if you buy many.
Why do the junction trees help

• Instead of bounding the cost by \(n - 1 \) you bound the cost by the number of terminal pairs connected, times the maximum length.

• It has some small tricks like applying a different algorithm if the number of pairs is \(\Omega(n^{4/5}) \).
Approximation Steiner Forest with distance bounds

- **Input:** Given the pairs \(\{s,t\} \) each pair has a distance bound \(D(s,t) \)
- **Objective:** find a minimum cost solution so that the distance between every pair of vertices \(s,t \) is at most \(D(s,t) \).
- **The same approximation ratio:** \(O(n^{3/5}) \)
Getting back to Directed Steiner Forest

• First sub-linear ratio by Feldman, Kortsarz, Nutov, 2009, $O(n^{4/5})$.

• Berman et al, 2013, improved the ratio to $O(n^{2/3})$ using their clever randomized rounding method.

• Using our additional junction tree and threshold trick we improve Berman et al to $O(n^{3/5})$ (however recall that our result is for the unweighted case). SODA 2017.
The message of this last paper

• **Introducing junction tress** can help approximating **spanner** problems. The first time **junction trees** ever used in spanners.

• **A second message** is that it seems that **additive spanners** are harder to approximate than **usual spanners**.
Additive spanners

- Aingworth, Chekuri, Indyk, Motwani 1996. For any graph, $n \cdot \sqrt{n}$ edges +2 spanners.
- Chechik. +4 spanners always exists with $O(n^{7/5})$ 2013.
- Baswana, Kavitha, Mehlhorn, Pettie show: Always exists +6, $O(n^{4/3})$ 2010 (before +4).
- Can we continue with this hobby for $k=8$, $k=10$ and so on?
Surprise (at least for me)

- The $O(n^{4/3})$ cannot be improved.
- There are large μ, so that μ, additive spanners require $\Omega(n^{4/3})$ edges.
- The last result for $k=6$ is best possible for much higher k.
- How do additive spanners compare to spanners for approximation? Turns out: Also harder.
The case of $k=1$

- We gave the first lower bound. SODA 2017.
- If we have edges of cost 0 this is easy.
- We can not show that its hard to span edges because of the $O(\log n)$ for $k=2$.
- Dividing edges brings new edges that need to be spanned. Feels like catch 22.
- Overcoming that by making the new paths added the same Labelcover hard. CDLK, SODA 2017.
For $k=O(\text{polylog}(n))$

- Again Labelcover hard. Harder proof.
- Additive spanners are harder to approximate than spanners.
- Any $+1$ spanner is a 2-spanner but $+1$ spanner much harder.
- Also $O(\log n)$ spanner has constant ratio but additive $\text{polylog}(n)$ spanner is Labelcover hard.
- The $+1$ spanners result surprised me.
Open problems

• Transitive closure spanners. Tree spanners

• Fault tolerant spanners. Simple and nice Algorithm by Dinitz and Krauthgamer.

• Fault tolerant spanners: new version

• Preserve the distance from s to G-s under at most f edges that can fall. Parver and Peleg.

• Find a minimum H so that for any |F| ≤ f, dist(s,u,G-F) = dist(s,u,H-F). Turned to be equivalent to Set Cover. Parver and Peleg.

• Many open questions remain here.
It is not possible to predict the future. Did you know that?

- Peleg and Ulman invented spanners in 1987.
- There was nothing. Only some results from geometry.
- I would imagine Peleg and Ulman did not expect the extent of which this subject will develop back then.