Universal Linkage and the Uniqueness of EDM Completions

A.Y. Alfakih

Dept of Math and Statistics
University of Windsor

DIMACS DGTA16, July 2016
Introduction

Every configuration $p = (p^1, \ldots, p^n)$ in \mathbb{R}^n defines EDM $D = (d_{ij} = ||p^i - p^j||^2)$. For example,
Introduction

Every configuration \(p = (p^1, \ldots, p^n) \) in \(\mathbb{R}^n \) defines EDM \(D = (d_{ij} = \|p^i - p^j\|^2) \). For example,

\[
D = \begin{bmatrix}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & 4 \\
2 & 1 & 2 & 4 & 0 \\
\end{bmatrix}
\]
Every configuration \(p = (p^1, \ldots, p^n) \) in \(\mathbb{R}^n \) defines EDM \(D = (d_{ij} = ||p^i - p^j||^2) \). For example,

\[
D = \begin{bmatrix}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & 4 \\
2 & 1 & 2 & 4 & 0
\end{bmatrix}
\]

Suppose a subset \(E \) of the entries of \(D \) is given. Does \(E \) uniquely determine \(D \)?
Introduction

Every configuration \(p = (p^1, \ldots, p^n) \) in \(\mathbb{R}^n \) defines EDM \(D = (d_{ij} = \|p^i - p^j\|^2) \). For example,

\[
D = \begin{bmatrix}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & 4 \\
2 & 1 & 2 & 4 & 0 \\
\end{bmatrix}
\]

Suppose a subset \(E \) of the entries of \(D \) is given. Does \(E \) uniquely determine \(D \)?
Every configuration $p = (p^1, \ldots, p^n)$ in \mathbb{R}^n defines EDM $D = (d_{ij} = \|p^i - p^j\|^2)$. For example,

$$D = \begin{bmatrix}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & 4 \\
2 & 1 & 2 & 4 & 0
\end{bmatrix}.$$

Suppose a subset E of the entries of D is given. Does E uniquely determine D?
Introduction

Every configuration $p = (p^1, \ldots, p^n)$ in \mathbb{R}^n defines EDM $D = (d_{ij} = ||p^i - p^j||^2)$. For example,

$$D = \begin{bmatrix}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & 4 \\
2 & 1 & 2 & 4 & 0
\end{bmatrix}$$

Suppose a subset E of the entries of D is given. Does E uniquely determine D?

for all $0 \leq x \leq 4$.

EDM Completions

- Given a symmetric partial matrix A and a graph G. Let $a_{ij} : \{i, j\} \in E(G)$ be specified, or fixed, and $a_{ij} : \{i, j\} \notin E(G)$ be unspecified, or free.

D is an EDM completion of A if D is an EDM and $d_{ij} = a_{ij}$ for all $\{i, j\} \in E(G)$.

A free entry d_{ij} is universally linked if d_{ij} is constant in all EDM completions of A.

If all free entries d_{ij} are universally linked, then D is the unique completion of A.

The set $\{d_{ij} : \{i, j\} \notin E(G)\}$ for all EDM completions D is called Cayley configuration space (CCS) of A.

CCS is a spectrahedron, i.e., intersection of psd cone with an affine space.
EDM Completions

- Given a symmetric partial matrix A and a graph G. Let $a_{ij}: \{i, j\} \in E(G)$ be specified, or fixed, and $a_{ij}: \{i, j\} \notin E(G)$ be unspecified, or free.

- D is an EDM completion of A if D is an EDM and $d_{ij} = a_{ij}$ for all $\{i, j\} \in E(G)$.
EDM Completions

- Given a symmetric partial matrix A and a graph G. Let $a_{ij} : \{i, j\} \in E(G)$ be specified, or fixed, and $a_{ij} : \{i, j\} \notin E(G)$ be unspecified, or free.
- D is an EDM completion of A if D is an EDM and $d_{ij} = a_{ij}$ for all $\{i, j\} \in E(G)$.
- A free entry d_{ij} is universally linked if d_{ij} is constant in all EDM completions of A.
EDM Completions

- Given a symmetric partial matrix A and a graph G. Let $a_{ij} : \{i,j\} \in E(G)$ be specified, or fixed, and $a_{ij} : \{i,j\} \not\in E(G)$ be unspecified, or free.

- D is an EDM completion of A if D is an EDM and $d_{ij} = a_{ij}$ for all $\{i,j\} \in E(G)$.

- A free entry d_{ij} is universally linked if d_{ij} is constant in all EDM completions of A.

- If all free entries d_{ij} are universally linked, then D is the unique completion of A.
EDM Completions

- Given a symmetric partial matrix A and a graph G. Let $a_{ij} : \{i,j\} \in E(G)$ be specified, or fixed, and $a_{ij} : \{i,j\} \not\in E(G)$ be unspecified, or free.

- D is an EDM completion of A if D is an EDM and $d_{ij} = a_{ij}$ for all $\{i,j\} \in E(G)$.

- A free entry d_{ij} is universally linked if d_{ij} is constant in all EDM completions of A.

- If all free entries d_{ij} are universally linked, then D is the unique completion of A.

- The set $\{d_{ij} =: \{i,j\} \not\in E(G) \text{ for all EDM completions } D \}$ is called Cayley configuration space (CCS) of A.
EDM Completions

- Given a symmetric partial matrix A and a graph G. Let $a_{ij} : \{i, j\} \in E(G)$ be specified, or fixed, and $a_{ij} : \{i, j\} \not\in E(G)$ be unspecified, or free.
- D is an EDM completion of A if D is an EDM and $d_{ij} = a_{ij}$ for all $\{i, j\} \in E(G)$.
- A free entry d_{ij} is universally linked if d_{ij} is constant in all EDM completions of A.
- If all free entries d_{ij} are universally linked, then D is the unique completion of A.
- The set $\{d_{ij} =: \{i, j\} \not\in E(G) \text{ for all EDM completions } D \}$ is called Cayley configuration space (CCS) of A.
- CCS is a spectrahedron, i.e., intersection of psd cone with an affine space.
Example

Consider $D = \begin{bmatrix} 0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0 \end{bmatrix}$. Let the free elements of D be \{1, 4\}, \{3, 5\} and \{4, 5\}.

The CCS of D is $d_{14} = 2$, $d_{35} = 2$ and $0 \leq d_{45} \leq 4$. Thus d_{14} and d_{35} are universally linked, while d_{45} is not universally linked.

The embedding dimension of EDM D is the dimension of the affine span of its generating points. The embedding dimension of D for $d_{45} = 0$ or 4 is 2, while it is 3 for $0 < d_{45} < 4$.
Example

Consider $D = \begin{bmatrix} 0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0 \end{bmatrix}$. Let the free elements of D be \{1, 4\}, \{3, 5\} and \{4, 5\}.

- The CCS of D is $d_{14} = 2$, $d_{35} = 2$ and $0 \leq d_{45} \leq 4$.

Thus d_{14} and d_{35} are universally linked, while d_{45} is not universally linked.

The embedding dimension of EDM D is the dim of affine span of its generating points.

- emb dim of D for $d_{45} = 0$ or 4 is 2, while it is 3 for $0 < d_{45} < 4$.

Example

Consider \(D = \begin{bmatrix}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & 4 \\
2 & 1 & 2 & 4 & 0
\end{bmatrix} \). Let the free elements of \(D \) be \{1, 4\}, \{3, 5\} and \{4, 5\}.

- The CCS of \(D \) is \(d_{14} = 2, d_{35} = 2 \) and \(0 \leq d_{45} \leq 4 \).
- Thus \(d_{14} \) and \(d_{35} \) are universally linked, while \(d_{45} \) is not universally linked.
Example

Consider \(D = \begin{bmatrix}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & 4 \\
2 & 1 & 2 & 4 & 0 \\
\end{bmatrix} \). Let the free elements of \(D \) be \{1, 4\}, \{3, 5\} and \{4, 5\}.

- The CCS of \(D \) is \(d_{14} = 2, d_{35} = 2 \) and \(0 \leq d_{45} \leq 4 \).
- Thus \(d_{14} \) and \(d_{35} \) are universally linked, while \(d_{45} \) is not universally linked.
- The embedding dimension of EDM \(D = \text{dim of affine span of its generating points} \).
Example

Consider \[D = \begin{bmatrix}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & 4 \\
2 & 1 & 2 & 4 & 0
\end{bmatrix} \]. Let the free elements of \(D \) be \(\{1, 4\}, \{3, 5\} \) and \(\{4, 5\} \).

- The CCS of \(D \) is \(d_{14} = 2 \), \(d_{35} = 2 \) and \(0 \leq d_{45} \leq 4 \).
- Thus \(d_{14} \) and \(d_{35} \) are universally linked, while \(d_{45} \) is not universally linked.
- The embedding dimension of EDM \(D = \dim \text{ of affine span of its generating points.} \)
- \(\text{emb dim of } D \text{ for } d_{45} = 0 \text{ or } 4 \text{ is } 2 \), while it is 3 for \(0 < d_{45} < 4 \).
Bar-and-Joint Frameworks

\[D = \begin{bmatrix}
0 & 1 & 4 & 2 + y_{14} & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 + y_{35} \\
2 + y_{14} & 1 & 2 & 0 & 4 + y_{45} \\
2 & 1 & 2 + y_{35} & 4 + y_{45} & 0
\end{bmatrix} \]

Think of the edges of \(G \) as rigid bars, and of the nodes of \(G \) as joints. Thus we have a bar-and-joint framework \((G, p)\).

Note that this \((G, p)\) folds across the \(\{1, 3\} \) edge.

The CCS of \(D \) is \(y_{14} = 0 \), \(y_{35} = 0 \) and \(-4 \leq y_{45} \leq 0\).

\{k, l\} is universally linked iff its CCS is contained in the hyperplane \(y_{kl} = 0 \) in \(\mathbb{R}^\bar{m} \), \(\bar{m} \) = num. of missing edges of \(G \).
Bar-and-Joint Frameworks

Think of the edges of G as **rigid bars**, and of the nodes of G as **joints**. Thus we have a bar-and-joint framework (G, p).

$$D = \begin{bmatrix}
0 & 1 & 4 & 2 + y_{14} & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 + y_{35} \\
2 + y_{14} & 1 & 2 & 0 & 4 + y_{45} \\
2 & 1 & 2 + y_{35} & 4 + y_{45} & 0
\end{bmatrix}$$
Bar-and-Joint Frameworks

Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework (G, p).

Note that this (G, p) folds across the $\{1, 3\}$ edge.

\[
D = \begin{bmatrix}
0 & 1 & 4 & 2 + y_{14} & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 + y_{35} \\
2 + y_{14} & 1 & 2 & 0 & 4 + y_{45} \\
2 & 1 & 2 + y_{35} & 4 + y_{45} & 0
\end{bmatrix}
\]
Bar-and-Joint Frameworks

Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework (G, p).

Note that this (G, p) folds across the $\{1, 3\}$ edge.

The CCS of D is $y_{14} = 0$, $y_{35} = 0$ and $-4 \leq y_{45} \leq 0$.

$$D = \begin{bmatrix}
0 & 1 & 4 & 2 + y_{14} & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 + y_{35} \\
2 + y_{14} & 1 & 2 & 0 & 4 + y_{45} \\
2 & 1 & 2 + y_{35} & 4 + y_{45} & 0
\end{bmatrix}$$
Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework (G, \mathbf{p}).

Note that this (G, \mathbf{p}) folds across the $\{1, 3\}$ edge.

The CCS of D is $y_{14} = 0$, $y_{35} = 0$ and $-4 \leq y_{45} \leq 0$.

$\{k, l\}$ is universally linked iff its CCS is contained in the hyperplane $y_{kl} = 0$ in $\mathbb{R}^{\bar{m}}$, $\bar{m} =$ num. of missing edges of G.

$$D = \begin{bmatrix}
0 & 1 & 4 & 2 + y_{14} & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 + y_{35} \\
2 + y_{14} & 1 & 2 & 0 & 4 + y_{45} \\
2 & 1 & 2 + y_{35} & 4 + y_{45} & 0
\end{bmatrix}$$
Universal Rigidity, Dimensional rigidity and Affine Motions

- Given framework (G, p), let H be the adjacency matrix of G.
Universal Rigidity, Dimensional rigidity and Affine Motions

- Given framework (G, p), let H be the adjacency matrix of G.
- (G, p) is universally rigid if $H \circ D_p = H \circ D_q$ implies that $D_p = D_q$. (\circ) denotes Hadamard product.
Universal Rigidity, Dimensional rigidity and Affine Motions

- Given framework (G, p), let H be the adjacency matrix of G.
- (G, p) is universally rigid if $H \circ D_p = H \circ D_q$ implies that $D_p = D_q$. (\circ) denotes Hadamard product.
- (G, p) is dimensionally rigid if $\nexists (G, q): H \circ D_p = H \circ D_q$ and $\text{embedd} (D_q) > \text{embedd} (D_p)$.
Universal Rigidity, Dimensional rigidity and Affine Motions

- Given framework \((G, p)\), let \(H\) be the adjacency matrix of \(G\).
- \((G, p)\) is universally rigid if \(H \circ D_p = H \circ D_q\) implies that \(D_p = D_q\). \((\circ)\) denotes Hadamard product.
- \((G, p)\) is dimensionally rigid if \(\not\exists (G, q): H \circ D_p = H \circ D_q\) and embedd \((D_q) \succ embedd (D_p)\).
- \((G, p)\) has an affine motion if \(\exists (G, q):\)
 (i) \(H \circ D_p = H \circ D_q\),
 (ii) \(D_p \neq D_q\) and
 (iii) \(q^i = Ap^i + b\) for \(i = 1, \ldots, n\).
Geometric Characterizations

- Thus \((G, p)\) is universally rigid iff its CCS = \{0\}.

Theorem [A 2005] \((G, p)\) is universally rigid iff it is both dimensionally rigid and has no affine motions.
Geometric Characterizations

- Thus \((G, p)\) is universally rigid iff its CCS = \(\{0\}\).
- Thus \((G, p)\) is dimensionally rigid iff 0 is in relint of its CCS.
Thus \((G, p)\) is universally rigid iff its CCS = \(\{0\}\).

Thus \((G, p)\) is dimensionally rigid iff 0 is in \text{relint} of its CCS.

Thus \((G, p)\) has no affine motion iff affine hull of minimal face(0) = \(\{0\}\).
Geometric Characterizations

- Thus \((G, p)\) is universally rigid iff its CCS = \{0\}.
- Thus \((G, p)\) is dimensionally rigid iff 0 is in relint of its CCS.
- Thus \((G, p)\) has no affine motion iff affine hull of minimal face(0) = \{0\}.
- Theorem [A 2005] \((G, p)\) is universally rigid iff it is both dimensionally rigid and has no affine motions.
Example

\[D = \begin{bmatrix}
0 & 4 & 5 + y_{13} & 1 \\
4 & 0 & 1 & 5 + y_{24} \\
5 + y_{13} & 1 & 0 & 4 \\
1 & 5 + y_{24} & 4 & 0
\end{bmatrix} \]

Obviously \((G, p)\) is not dimensionally rigid. It has an affine motion, and neither \{1, 3\} nor \{2, 4\} is universally linked.
Example

\[D = \begin{bmatrix}
0 & 4 & 5 + y_{13} & 1 \\
4 & 0 & 1 & 5 + y_{24} \\
5 + y_{13} & 1 & 0 & 4 \\
1 & 5 + y_{24} & 4 & 0
\end{bmatrix} \]

Obviously \((G, p)\) is not dimensionally rigid. It has an affine motion, and neither \(\{1, 3\}\) nor \(\{2, 4\}\) is universally linked.
Example

\[D = \begin{bmatrix}
0 & 4 & 5 + y_{13} & 1 \\
4 & 0 & 1 & 5 + y_{24} \\
5 + y_{13} & 1 & 0 & 4 \\
1 & 5 + y_{24} & 4 & 0
\end{bmatrix} \]

Obviously \((G, p)\) is not dimensionally rigid. It has an affine motion, and neither \(\{1, 3\}\) nor \(\{2, 4\}\) is universally linked.
A stress of framework \((G, p)\) is \(\omega : E(G) \rightarrow \mathbb{R}\) such that

\[
\sum_j \omega_{ij}(p^i - p^j) = 0.
\]
Stress Matrix Ω

- A stress of framework (G, p) is $\omega : E(G) \rightarrow \mathbb{R}$ such that
 \[\sum_j \omega_{ij}(p^i - p^j) = 0. \]

- A stress matrix Ω of framework (G, p) is:
 \[\Omega_{ij} = \begin{cases}
 -\omega_{ij} & \text{if } \{i, j\} \in E(G) \\
 0 & \text{if } \{i, j\} \in E(G) \\
 \sum_k: \{i, k\} \in E(G) \omega_{ik} & \text{if } i = j
 \end{cases} \]

- If (G, p) is r-dimensional, then rank $\Omega \leq n - 1 - r$.

- Ω is optimal dual variable in a certain Semidefinite programming problem.
Stress Matrix Ω

- A stress of framework (G, p) is $\omega : E(G) \to \mathbb{R}$ such that

$$\sum_j \omega_{ij}(p_i - p_j) = 0.$$

- A stress matrix Ω of framework (G, p) is:

$$\Omega_{ij} = \begin{cases}
-\omega_{ij} & \text{if } \{i,j\} \in E(G) \\
0 & \text{if } \{i,j\} \in E(G) \\
\sum_{k: \{i,k\} \in E(G)} \omega_{ik} & \text{if } i = j
\end{cases}$$

- If (G, p) is r-dimensional, then $\text{rank } \Omega \leq n - 1 - r$.

Ω is optimal dual variable in a certain Semidefinite programming problem.
Stress Matrix Ω

- A stress of framework (G, p) is $\omega : E(G) \to \mathbb{R}$ such that
 \[\sum_j \omega_{ij}(p^i - p^j) = 0. \]

- A stress matrix Ω of framework (G, p) is:
 \[
 \Omega_{ij} = \begin{cases}
 -\omega_{ij} & \text{if } \{i, j\} \in E(G) \\
 0 & \text{if } \{i, j\} \in E(G^c) \\
 \sum_k : \{i, k\} \in E(G) \omega_{ik} & \text{if } i = j
 \end{cases}
 \]

- If (G, p) is r-dimensional, then $\text{rank } \Omega \leq n - 1 - r$.
- Ω is optimal dual variable in a certain Semidefinite programming problem.
Theorem[A. ’05, Connelly ’82]: Let Ω be a stress matrix of r-dimensional framework (G, p), $r \leq n - 2$. If Ω is psd and of rank $n - r - 1$, then (G, p) is dimensionally rigid.
Theorem[A. ’05, Connelly ’82]: Let Ω be a stress matrix of r-dimensional framework (G, p), $r \leq n - 2$. If Ω is psd and of rank $n - r - 1$, then (G, p) is dimensionally rigid.

Theorem[A and Yinyu Ye ’13]: Let Ω be a stress matrix of r-dimensional framework (G, p). $r \leq n - 2$. If rank $\Omega = n - r - 1$ and if p is in general position, then (G, p) has no affine motion.
Theorem[A. ’05, Connelly ’82]: Let Ω be a stress matrix of r-dimensional framework (G, p), $r \leq n - 2$. If Ω is psd and of rank $n - r - 1$, then (G, p) is dimensionally rigid.

Theorem[A and Yinyu Ye ’13]: Let Ω be a stress matrix of r-dimensional framework (G, p). $r \leq n - 2$. If rank $\Omega = n - r - 1$ and if p is in general position, then (G, p) has no affine motion.

Theorem[A and Nguyen ’13]: Let Ω be a stress matrix of r-dimensional framework (G, p). $r \leq n - 2$. If rank $\Omega = n - r - 1$ and if for each vertex i, the set $\{p^i\} \cup \{p^j : \{i, j\} \in E(G)\}$ is in general position, then (G, p) has no affine motion.
Main Results

- Let E_{ij}: 1 in ijth and jith entries and 0s elsewhere.
Main Results

- Let E^{ij}: 1 in ijth and jith entries and 0s elsewhere.
- Let Ω be non-zero psd stress matrix of r-dimensional (G, p), $r \leq n - 2$.
Main Results

- Let E^{ij}: 1 in ijth and jith entries and 0s elsewhere.
- Let Ω be non-zero psd stress matrix of r-dimensional (G, p), $r \leq n - 2$.
- Theorem [A. ’16] If $\not\exists y_{kl} \neq 0$:

$$\Omega\left(\sum_{\{i,j\}\in E(G)} y_{ij}E^{ij}\right) = 0,$$

then $\{k, l\}$ is universally linked.
Main Results

- Let E^{ij}: 1 in ijth and jith entries and 0s elsewhere.
- Let Ω be non-zero psd stress matrix of r-dimensional (G, p), $r \leq n - 2$.
- Theorem [A. '16] If $\exists y_{kl} \neq 0$:
 \[
 \Omega\left(\sum_{\{i,j\} \in E(G)} y_{ij} E^{ij} \right) = 0,
 \]
 then $\{k, l\}$ is universally linked.
- Theorem [A. '16] If $\exists y=(y_{ij}) \neq 0$:
 \[
 \Omega\left(\sum_{\{i,j\} \in E(G)} y_{ij} E^{ij} \right) = 0,
 \]
 then (G, p) is universally rigid.
e is the vector of all 1s.

Theorem [Schoenberg '35, Young and Householder '38]: Let D be a real symmetric matrix with zero diagonal. Then D is EDM iff

$$\mathcal{T}(D) = -\frac{1}{2}(I - \frac{ee^T}{n})D(I - \frac{ee^T}{n}) \succeq 0.$$

Moreover, the embedding dimension of D is equal to rank $\mathcal{T}(D)$.
Characterizing EDMs

- e is the vector of all 1s.
- **Theorem** [Schoenberg ’35, Young and Householder ’38]: Let D be a real symmetric matrix with zero diagonal. Then D is EDM iff
 \[
 \mathcal{T}(D) = -\frac{1}{2}(I - \frac{ee^T}{n})D(I - \frac{ee^T}{n}) \succeq 0.
 \]
 Moreover, the embedding dimension of D is equal to rank $\mathcal{T}(D)$.

- $B = \mathcal{T}(D)$ is the **Gram matrix** of the generating points of D.
- B is not invariant under translations. Thus impose $Be = 0$.

Characterizing CCS

- Let V be $n \times (n - 1)$ matrix: $V^T e = 0$ and $V^T V = I$.

Characterizing CCS

- Let \(V \) be \(n \times (n - 1) \) matrix: \(V^T e = 0 \) and \(V^T V = I \).
- Let \(X = V^T B V = -VDV^T / 2 \) or \(B = VXV^T \). Thus \(X \) is called the projected Gram matrix of \(D \).
Characterizing CCS

- Let V be $n \times (n - 1)$ matrix: $V^T e = 0$ and $V^T V = I$.
- Let $X = V^T B V = -VDV^T / 2$ or $B = VXV^T$. Thus X is called the projected Gram matrix of D.
- Thus there is a one-to-one correspondence between $n \times n$ EDMs D and psd matrices of order $n - 1$.
Characterizing CCS

- Let V be $n \times (n - 1)$ matrix: $V^T e = 0$ and $V^T V = I$.
- Let $X = V^T B V = -VDV^T/2$ or $B = VXV^T$. Thus X is called the projected Gram matrix of D.
- Thus there is a one-to-one correspondence between $n \times n$ EDMs D and psd matrices of order $n - 1$.
- The CCS of (G, p) is given by

$$\{y = (y_{ij}) : X + \sum_{ij : \{i,j\} \notin E(G)} y_{ij} M^{ij} \succeq 0\},$$

where X is the projected Gram matrix of (G, p) and M^{ij}s are universal matrices.
Facial Structure of CCS

Let $\mathcal{X}(y) = X + \sum_{ij: \{i,j\} \not\in E(G)} y_{ij} M_{ij}$. Thus CCS is given by

$$\mathcal{F} = \{ y : \mathcal{X}(y) \succeq 0 \}.$$
Facial Structure of CCS

- Let $\mathcal{X}(y) = X + \sum_{ij: \{i,j\} \notin E(G)} y_{ij} M_{ij}$. Thus CCS is given by

$$\mathcal{F} = \{ y : \mathcal{X}(y) \succeq 0 \}.$$

- **Theorem:** Let U be the matrix whose columns form an orthonormal basis of $\text{null}(\mathcal{X}(y))$. Let Ω be a non-zero psd stress matrix of (G, ρ). Then

$$\minface(y) = \{ x \in \mathcal{F} : \text{null}(\mathcal{X}(y)) \subseteq \text{null}(\mathcal{X}(x)) \}$$

$$\text{relint}(\minface)(y) = \{ x \in \mathcal{F} : \text{null}(\mathcal{X}(y)) = \text{null}(\mathcal{X}(x)) \}$$

$$\text{aff}(\minface)(y) = \{ x \in \mathbb{R}^m : \mathcal{X}(x)U = 0 \}$$

$$\Omega V \mathcal{X}(x) V^T = 0 \text{ for all } x \in \mathcal{F}.$$
Strong Arnold Property (SAP)

Given graph G, let A be an $n \times n$ symmetric matrix A such that $A_{ij} = 0$ for all $\{i,j\} \in E(G)$. Then A satisfies SAP if $Y = 0$ is the only symmetric matrix satisfying: (i) $Y_{ij} = 0$ if $i = j$ or $\{i,j\} \in E(G)$ and (ii) $AY = 0$. Thus our sufficient condition for universal rigidity is equivalent to the assertion that stress matrix Ω satisfies SAP.
Strong Arnold Property (SAP)

Given graph G, let A be an $n \times n$ symmetric matrix A such that $A_{ij} = 0$ for all $\{i, j\} \in E(G)$. Then A satisfies SAP if $Y = 0$ is the only symmetric matrix satisfying: (i) $Y_{ij} = 0$ if $i = j$ or $\{i, j\} \in E(G)$ and (ii) $AY = 0$.

Thus our sufficient condition for universal rigidity is equivalent to the assertion that stress matrix Ω satisfies SAP.
Given graph G, let rank $\Omega = k$ and let $S_k = \{ A \text{ is symm : rank } A = k \}$. Further, let T_Ω be the tangent space to S_k at Ω. Thus $\Omega \in S_k \cap L$. We say S_k transversally intersects L at Ω if $T_\Omega \perp \Omega \cap S_k \perp k = \{ 0 \}$. Thus our sufficient condition for universal rigidity is equivalent to the assertion that S_k transversally intersects L at Ω.
Transversal Intersections

- Given graph G, let rank $\Omega = k$ and let $S_k = \{A \text{ is symm: rank } A = k\}$. Further, let T_Ω be the tangent space to S_k at Ω.
- Let $L = \{A \text{ is symm: } A_{ij} = 0 \text{ if } \{i, j\} \in E(\overline{G})\}$.
Given graph G, let rank $\Omega = k$ and let
$S_k = \{A \text{ is symm : } \text{rank } A = k\}$. Further, let T_Ω be the
tangent space to S_k at Ω.

Let $\mathcal{L} = \{A \text{ is symm: } A_{ij} = 0 \text{ if } \{i, j\} \in E(\overline{G})\}$.

Thus $\Omega \in S_k \cap \mathcal{L}$. We say S_k transversally intersects \mathcal{L} at Ω if
$T_\Omega \perp S_k \perp = \{0\}$.
Transversal Intersections

- Given graph G, let rank $\Omega = k$ and let $S_k = \{A \text{ is symm : rank } A = k\}$. Further, let T_Ω be the tangent space to S_k at Ω.
- Let $\mathcal{L} = \{A \text{ is symm: } A_{ij} = 0 \text{ if } \{i, j\} \in E(\overline{G})\}$.
- Thus $\Omega \in S_k \cap \mathcal{L}$. We say S_k transversally intersects \mathcal{L} at Ω if $T_\Omega^\perp \cap S_k^\perp = \{0\}$.
- Thus our sufficient condition for universal rigidity is equivalent to the assertion that S_k transversally intersects \mathcal{L} at Ω.
SDP Non-degeneracy (Alizadeh et al ’97)

Consider the pair of dual SDPs:

(P) \max_y \quad 0^T y \\
subject to \quad \mathcal{X}(y) = X + \sum_{ij} y_{ij} M^{ij} \succeq 0

(D) \min_Y \quad \text{trace}(XY) \\
subject to \quad \text{trace}(M^{ij} Y) = 0 \\
Y \succeq 0.

Let $L'_E = \text{span}\{M^{ij}: \{(i, j)\} \in E(G)\}$ and let T_Y be the tangent space at Y to the set of symmetric matrices of order $n-1$.

Y is non-degenerate if $T_Y \cap L'_E = \{0\}$.

Theorem [Alizadeh et al ’97]: If (D) has an optimal non-degenerate Y, then y in (P) is unique.
Consider the pair of dual SDPs:

\[(P) \text{ max}_y \quad 0^T y \quad \text{subject to} \quad x(y) = X + \sum_{ij} y_{ij} M^{ij} \succeq 0\]

\[(D) \text{ min}_Y \quad \text{trace}(XY) \quad \text{subject to} \quad \text{trace}(M^{ij} Y) = 0 \quad Y \succeq 0.\]

Let \(\mathcal{L}' = \text{span} \{ M^{ij} : \{i, j\} \in E(\bar{G}) \} \) and let \(T_Y \) be the tangent space at \(Y \) to the set of symm matrices of order \(n - 1 \).
Consider the pair of dual SDPs:

\[(P) \quad \max_y \quad 0^T y \]
subject to \[x(y) = X + \sum_{ij} y_{ij} M^{ij} \succeq 0\]

\[(D) \quad \min_Y \quad \text{trace}(XY) \]
subject to \[\text{trace}(M^{ij} Y) = 0 \]
\[Y \succeq 0.\]

Let \(L' = \text{span} \{ M^{ij} : \{i, j\} \in E(G) \} \) and let \(T_Y \) be the tangent space at \(Y\) to the set of symm matrices of order \(n - 1\).

\(Y\) is non-degenerate if \(T_Y \perp L' = \{0\}\).
Consider the pair of dual SDPs:

(P) \[\max_y y^T 0 \]
subject to \[x(y) = X + \sum_{ij} y_{ij} M_{ij} \succeq 0 \]

(D) \[\min_Y \text{trace}(XY) \]
subject to \[\text{trace}(M_{ij} Y) = 0 \]
\[Y \succeq 0. \]

Let \(\mathcal{L}' = \text{span} \{ M_{ij} : \{i,j\} \in E(G) \} \) and let \(\mathcal{T}_Y \) be the tangent space at \(Y \) to the set of symm matrices of order \(n - 1 \).

\(Y \) is non-degenerate if \(\mathcal{T}_Y^\perp \cap \mathcal{L}' = \{0\} \).

Theorem[Alizadeh et al '97]: If (D) has an optimal non-degenerate \(Y \), then \(y \) in (P) is unique.
Thank You