One-Pass Streaming Algorithms

Complaints and Grievances about theory in practice
Disclaimer

- Experiences with Gigascope.
- A practitioner’s perspective.
- Will be using my own implementations, rather than Gigascope.
Outline

- What is a data stream?
- Is sampling good enough?
- Distinct Value Estimation
- Frequency Estimation
- Heavy Hitters
Setting

- Continuously generated data.
- Volume of data so large that:
 - We cannot store it.
 - We barely get a chance to look at all of it.
- Good example: **Network Traffic Analysis**
 - Millions of packets per second.
 - Hundreds of concurrent queries.
 - How much main memory per query?
Formally

- **Data**: Domain of items $D = \{1, \ldots, N\}$,
 ... where N is very large!
 - IPv4 address space is 2^{32}.
- **Stream**: A multi-set $S = \{ i_1, i_2, \ldots, i_M \}$, $i_k \in D$:
 - Keeps expanding.
 - i’s arrive in any order.
 - i’s are inserted and deleted.
 - i’s can even arrive as incremental updates.
- **Essential quantities**: N and M.
Example

- Number of distinct items
 - Distinct destination IP addresses

<table>
<thead>
<tr>
<th>Packet #</th>
<th>Source IP</th>
<th>Destination IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>147.102.1.1</td>
<td>www.google.com</td>
</tr>
<tr>
<td>2:</td>
<td>162.102.1.20</td>
<td>147.102.10.5</td>
</tr>
<tr>
<td>3:</td>
<td>154.12.2.34</td>
<td>www.niss.org</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k:</td>
<td>147.102.1.2</td>
<td>www.google.com</td>
</tr>
</tbody>
</table>

- Simple solution: Maintain a hash table
- How big will it get?
One-Pass Algorithm

- Design an algorithm that will:
 - Examine arriving items once, and discard.
 - Update internal state fast (O(1) to poly log N).
 - Provide answers fast.
 - Provide guarantees on the answers (\(\epsilon, \delta\)).
 - Use small space (poly log N).
 - ...

- We call the associated structure:
 - A sketch, synopsis, summary
Example (cont.)

- Distinct number of items:
 - Use a memory resident hash table:
 - Examines each item only once.
 - Fairly fast updates
 - Very fast querying
 - Provides exact answer
 - Can get arbitrarily large

- Can we get good, approximate solutions instead?
Outline

- What is a data stream?
- Is sampling good enough?
- Distinct Value Estimation
- Frequency Estimation
- Heavy Hitters
Randomness is key

Maybe we can use sampling:

- Very bad idea (sorry sampling fans!)
- Large errors are unavoidable for estimates derived only from random samples.
- Even worse, negative results have been proved for “any (possibly randomized) strategy that selects a sequence of x values to examine from the input” [CCMN00]
Outline

- Is sampling good enough?
- Distinct Value Estimation
- Frequency Estimation
- Heavy Hitters
We need to be more clever

- Design algorithms that **examine all inputs**
- The FM sketch [FM85]:
 - Assign items *deterministically* to a random variable from a geometric distribution:
 \[
 \Pr[h(i) = k] = 1/2^k.
 \]
 - Maintain array A of log N bits, initialized to 0.
 - Insert i: set \(A[h(i)] = 1 \).
 - Let \(R = \{ \min j \mid A[j] = 0 \} \).
 \[
 \ldots0010001001101111111
 \]
 - Then, distinct items \(D' \approx 1.29 \cdot 2^R \).
 - This is an unbiased estimate! Long proof…
How clever do we need to be?

- A simpler algorithm.
- The KMV sketch [BHRSG06]:
 - Assign items *deterministically* to uniform random numbers in [0, 1].
 - \(d \) distinct items will cut the unit interval in \(d \) equi-length intervals, of size \(\sim 1/d \).
 - Suppose we maintain the \(k \)-th minimum item:
 - \(h(k) \approx k \cdot 1/d \), hence \(D' \approx k / h(k) \).
 - This estimate is biased upwards, but …
 - \(D' \approx (k – 1) / h(k) \) isn’t! Easy proof…
Let's compare

- **Guarantees**: \(\Pr[|D - D'| < \epsilon D] > 1 - \delta. \)
- **Space** \((\epsilon, \delta\) guarantees):
 - FM: \(1/\epsilon^2 \log(1/\delta) \log N\) bits
 - KMV: the same
- **Update time**:
 - FM: \(1/\epsilon^2 \log(1/\delta)\)
 - KMV: \(\log(1/\epsilon^2) \log(1/\delta)\)

KMV is much faster! But how well does it work?
But first … a practical issue

- How do we define this “perfect” mapping h?
 - Should be pair-wise independent.
 - Collision free.
 - Should be stored in log space.

- This doesn’t exist! Instead:
 - We can use **Pseudo Random Generators**.
 - We can use a **Universal Hash Function**.
 - “Look” random, can be stored in log space.

- We are deviating from theory!
Let’s run some experiments

- **Data:**
 - AT&T backbone traffic

- **Query:**
 - Distinct destination IPs observed every 10000 packets.

- **Measures:**
 - Sketch size (number of bytes)
 - Insertion cost (updates per second)
Sketch size

Average Relative Error vs Sketch Size

- **FM**
- **KMV**

Sketch size (bytes)

Average relative error
Insertion cost

Updates Per Second vs Sketch Size

Sketch size (bytes)

Updates per second

FM

KMV
Speeding up FM

- Instead of updating all $1/\varepsilon^2$ bit vectors:
 - Partition input into m bins.
 - Average over all bins at the end.

- Authors call this approach Stochastic Averaging.
Sketch size

Average Relative Error vs Sketch Size

FM
FM-SA
KMV
RS
Insertion cost

Updates Per Second vs Sketch Size

- FM
- FM-SA
- KMV
- RS
Uniformly distributed data

Averate Relative Error vs Sketch Size

Average relative error

Sketch size (bytes)
Zipf data

Average Relative Error vs Skew (800 bytes)

- FM
- FM-SA
- KMV

Average relative error

Skew
Any conclusion?

- The size of the window matters:
 - The smaller the quantity the harder to estimate.
 - FM-SA: Increasing the number of bit vectors, assigns fewer and fewer items to each bin.
 - Better off using exact solution in some cases.
- The quality of the hash function matters.
- FM-SA best overall … if we can tune the size.
- What about deletions?
Outline

- Distinct Value Estimation
- Frequency Estimation
- Heavy Hitters
The problem

- **Problem:**
 - For each \(i \in D \), maintain the frequency \(f(i) \), of \(i \in S \).

- **Application:**
 - How much traffic does a user generate?
 - Estimate the number of packets transmitted by each source IP.
A Counter-Example!

Puzzle:
1. Assume a skewed distribution. What is the frequency of ... 80% of the items?
2. Assume a uniform distribution. What is the frequency of ... 99% of the items?

Conclusion:
- Frequency counting is not very useful!
Not convinced yet?

The Fast-AMS sketch [AMS96,CG05]:
- Maintain an $m \times n$ matrix M of counters, initialized to zero.
- Choose m 2-wise independent hash functions (image $[1, n]$).
- Choose m 4-wise independent hash functions (image $\{-1, +1\}$).
- Insert i:
 - For each $k \in [1, m]: M[k, h^2_k(i)] += h^4_k(i)$.
- Query i:
 - The median of the m counters corresponding to i.
Theoretical bounds

This algorithm gives ϵ, δ guarantees:
- Space: $1/\epsilon \log(1/\delta) \log N$

What’s the catch?
- Guarantees: $\Pr[|f_i - f_i'| < \epsilon M] > 1 - \delta$

Not very useful in practice!
Experiments with AT&T data

Averate Relative Error vs Top-k

Average relative error

Top-k
Outline

- Frequency Estimation
- Heavy Hitters
The problem

Problem:
- Given $\theta \in (0, 0.5]$, maintain all i s.t. $f(i) \geq \theta M$.

Application:
- Who is generating most of the traffic?
 - Identify the source IPs with the largest payload.
- Heavy hitters make sense... in some cases!
 - What if the distribution is uniform?

Detect if the distribution is skewed first!
The solutions

- Heavy hitters is an easier problem.

- Deterministic algorithms:
 - Misra-Gries [MG82].
 - Lossy counting [MM02].
 - Quantile Digest [SBAS04].

- Randomized algorithms:
 - Fast AMS + heap.
 - Hierarchical Fast AMS (dyadic ranges).
Misra-Gries

- Maintain k pairs \((i, f_i)\) as a hash table \(H\):
 - Insert \(i\):
 - If \(i \in H\): \(f_i += 1\),
 - else insert \((i, 1)\).
 - If \(|H| > k\), for all \(i\): \(f_i -= 1\).
 - If \(f_i = 0\), remove \(i\) from \(H\).

- Problem:
 - The algorithm is supposed to be deterministic.
 - Hash table implies randomization!
Misra-Gries Cost

- **Space:**
 - $1/\theta$.

- **Update:**
 - Expected $O(1)$:
 - Play tricks to get rid of the hash table.
 - Increase space to use pointers and doubly linked lists.
Lossy Counting

- Maintain list L of \((i, f_i, \delta)\) items:
 - Set \(B = 1\).
 - Insert \(i\):
 - If \(i\) in L, \(f_i + 1\),
 - else add \((i, 1, B)\).
 - On every \(1/\theta\) arrivals:
 - \(B + 1\),
 - Evict all \(i\) s.t. \(f_i + \delta \leq B\).
Lossy Counting Cost

- **Space:**
 - $\frac{1}{\theta} \log \theta N$

- **Update:**
 - Expected $O(1)$
Quantile Digest

- A hierarchical algorithm for estimating quantiles.
- Based on binary tree.
- Can be used to detect heavy hitters.
 - Leaf level of tree are all the items with large frequencies!

- Estimating quantiles is a generalization of heavy hitters.
Quantile Digest Cost

- **Space:**
 - $\frac{1}{\theta} \log N$

- **Update:**
 - $\log \log N$
Experiments

- Uniform distribution: No Heavy Hitters!
- Experiments with AT&T data:
 - **Recall**: Percent of true heavy hitters in the result.
 - **Precision**: Percent of true heavy hitters over all items returned.
 - **Update cost**.
 - **Size**.
- All algorithms consistently had 100% recall.
Conclusion

- Many interesting data stream applications.
- Setting necessitates use of approximate, small space algorithms.
- Some algorithms give theoretical guarantees, but have problems in practice.
- Some algorithms behave very well.
- There is always room for improvement.
Outline

End

- Heavy Hitters
References

- [CCMN00]: Towards estimation error guarantees for distinct values.
- [FM85]: Counting Algorithms for Data Base Applications.
- [BHRSG07]: On synopses for distinct-value estimation under multiset operations.
- [AMS96]: The Space Complexity of Approximating the Frequency Moments.
- [CG05]: Sketching streams through the net: Distributed approximate query tracking.
- [MG82]: Finding repeated elements.
- [MM00]: Approximate frequency counts over data streams.
- [SBAS04]: Medians and beyond: approximate aggregation techniques for sensor networks.