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Two recent papers

- Moretti S., Tsoukias A. (2012). Ranking Sets of Possibly
Interacting Objects Using Shapley Extensions. In Thirteenth
International Conference on the Principles of Knowledge
Representation and Reasoning (KR2012).

- Lucchetti R., Moretti S., Patrone F. (2012) A probabilistic
approach to ranking sets of interacting objects, in progress.



Central question

How to derive a ranking over the set of all subsets of N in a way
that is “compatible” with a primitive ranking over the single

elements of N?

- Relevant number of papers focused on the problem of deriving a
preference relation on the power set of N from a preference
relation over single objects in N. Most of them provide an
axiomatic approach (Kannai and Peleg (1984), Barbera et al
(2004), Bossert (1995), Fishburn (1992), Roth (1985) etc.)

- Extension axiom: Given a total preorder < on N, we say that a
total preorder w on 2N is an extension of < if and only if for each
x , y ∈ N,

{x} w {y} ⇔ x < y



Well-known properties prevent interaction

Axiom [Responsiveness, RESP] A total preorder w on 2N satisfies
the responsiveness property iff for all A ∈ 2N \ {N, ∅}, for all x ∈ A
and for all y ∈ N \ A the following conditions holds

A w (A \ {x}) ∪ {y} ⇔ {x} w {y}

- This axiom was introduced by Roth (1985) studying colleges’
preferences for the “college admission problem” (see also Gale and
Shapley (1962)).

- Bossert (1995) used the same property for ranking sets of
alternatives with a fixed cardinality and to characterize the class of
rank-ordered lexicographic extensions.



Well-known extensions prevent interaction

Most of the axiomatic approaches from the literature make use of
the RESP axiom to prevent any kind of interaction among the
objects in N.:

- max and min extensions (Kreps 1979, Barberà, Bossert, and
Pattanaik 2004)

- lexi-min and lexi-max extensions (Holzman 1984, Pattanaik and
Peleg 1984)

- median-based extensions (Nitzan and Pattanaik 1984)

- rank-ordered lexicographic extensions (Bossert 1995)

- many others...



Basic-Basic on coalitional games

A coalitional game (many names...) is a pair (N, v), where N
denotes the finite set of players and v : 2N → R is the
characteristic function, with v(∅) = 0.

Given a game, a regular semivalue (see Dubey et al. 1981,
Carreras and Freixas 1999; 2000) may be computed to convert
information about the worth that coalitions can achieve into a
personal attribution (of payoff) to each of the players:

πpi (v) =
∑

S⊂N:i /∈S

ps

(
v(S ∪ {i})− v(S)

)
for each i ∈ N, where ps represents the probability that a coalition
S ∈ 2N (of cardinality s) with i /∈ S forms. So coalitions of the
same size have the same probability to form!

(of course
∑n−1

s=0

(n−1
s

)
ps = 1, but we also assume ps > 0.)



Shapley and Banzhaf regular semivalues

- The Shapley value (Shapley 1953) is a regular semivalue πp̂(v),
where

p̂s =
1

n
(n−1

s

) =
s!(n − s − 1)!

n!

for each s = 0, 1, . . . , n− 1 (i.e., the cardinality is selected with the
same probability).

- Another very well studied probabilistic value is the Banzhaf value
(Banzhaf III 1964), which is defined as the regular semivalue
πp̃(v), where

p̃s =
1

2n−1

for each s = 0, 1, . . . , n − 1, (i.e., each coalition has an equal
probability to be chosen)



πp-aligned total preorders

Given a total preorder w on 2N , we denote by V (w) the class of
coalitional games that numerically represent w (for each
S ,V ∈ 2N , S w V ⇔ u(S) ≥ u(V ) for each u ∈ V (w)).

DEF. Let πp be a regular semivalue. A total prorder w on 2N is
πp-aligned iff for each numerical representation v ∈ V (w) we have
that

{i} w {j} ⇔ πpi (v) ≥ πpj (v)

for all i , j ∈ N.

Here we use regular semivalues to impose a constraint to the
possibilities of interaction among objects: complementarities or
redundancy are possible but, globally, their effects cannot
overwhelm the limitation imposed by the original ranking.



Example: Shapley-aligned total preorder...

For each coalitional game v , the Shapley value is denoted by
φ(v) = πp̂(v).
Let N = {1, 2, 3} and let wa be a total preorder on N such that
{1, 2, 3} Aa {3} Aa {2} Aa {1, 3} Aa {2, 3} Aa {1} Aa {1, 2} Aa

∅.

For every v ∈ V (wa)

φ2(v)− φ1(v) =
1

2

(
v(2)− v(1)

)
+

1

2

(
v(2, 3)− v(1, 3)

)
> 0

On the other hand

φ3(v)− φ2(v) =
1

2

(
v(3)− v(2)

)
+

1

2

(
v(1, 3)− v(1, 2)

)
> 0.



... πp-aligned for other regular semivalues

Note that wa is πp-aligned for every regular semivalue such that
p0 ≥ p2:

πp2(v)−πp1(v) = (p0+p1)
(
v(2)−v(1)

)
+(p1+p2)

(
v(2, 3)−v(1, 3)

)
> 0

On the other hand

πp3(v)−πp2(v) = (p0+p1)
(
v(3)−v(2)

)
+(p1+p2)

(
v(1, 3)−v(1, 2)

)
> 0

for every v ∈ V (wa).



Total preorder πp-aligned for no regular semivalues

It is quite possible that for a given preorder there is no πp-ordinal
semivalue associated to it. It is enough, for instance, to consider
the case N = {1, 2, 3} and the following total preorder:

N A {1, 2} A {2, 3} A {1} A {1, 3} A {2} A {3} A ∅.

Then it is easy to see that 1 and 2 cannot be ordered since, fixed a
semivalue p the quantity

πp2(v)−πp1(v) = (p0+p1)(v({1})−v({2}))+(p1+p2)(v({1, 3})−v({2, 3}))

can be made both positive and negative by suitable choices of v .



Proposition Let w be a total preorder on 2N . If w satisfies the
RESP property, then it is πp-aligned with every regular semivalue
πp.

- All the extensions from the literature listed in the previous slide
are πp-aligned with all regular semivalues...

{1, 2, 3} Aa {3} Aa {2} Aa {1, 3} Aa {2, 3} Aa {1} Aa {1, 2} Aa ∅
is not RESP but is πp-aligned with all πp such that p0 ≥ p2.

- We can say something more....



Monotonic total preorders

Axiom [Monotonicity, MON] A total preorder w on 2N satisfies
the monotonicity property iff for each S ,T ∈ 2N we have that

S ⊆ T ⇒ T w S .

wa introduced in the previous example does not satisfy MON:
{1, 2, 3} Aa {3} Aa {2} Aa {1, 3} Aa {2, 3} Aa {1} Aa {1, 2} Aa

∅.

- Min extension is a πp-aligned for all regular semivalues, it
satisfies RESP, but it does not satisfy MON.



An axiomatic characterization (with no interaction)

Let w be a total preorder on 2N . For each S ∈ 2N \ {∅}, denote by
wS the restriction of w on 2S such that for each U,V ∈ 2S ,

U w V ⇔ U wS V .

Theorem Let πp be a regular semivalue. Let w be a total preorder
on 2N which satisfies the MON property. The following two
statements are equivalent:

(i) w satisfies the RESP property.
(ii) wS is πp-aligned for every S ∈ 2N \ {∅}.

- side-product: for a large family of coalitional games all regular
semivalues are ordinal equivalent (e.g. airport games (Littlechild
and Owen (1973), Littlechild and Thompson (1977))



A generalization of RESP which admits the interaction

We denote by Σs
ij the set of all subsets of N of cardinality s which

do not contain neither i nor j , i.e.
Σs
ij = {S ∈ 2N : i , j /∈ S , |S | = s}.

Order the sets S1,S2, . . . ,Sns in Σs
ij when you add i and j ,

respectively:
S1 ∪ {i} Sl(1) ∪ {j}
|
⊔

|
⊔

S2 ∪ {i} Sl(2) ∪ {j}
|
⊔

|
⊔

. . . . . .
|
⊔

|
⊔

Sns ∪ {i} Sl(ns) ∪ {j}



Axiom[Permutational Responsiveness, PR]

We denote by Σs
ij the set of all subsets of N of cardinality s which

do not contain neither i nor j , i.e.
Σs
ij = {S ∈ 2N : i , j /∈ S , |S | = s}.

Order the sets S1,S2, . . . ,Sns in Σs
ij when you add i and j ,

respectively:
S1 ∪ {i} w Sl(1) ∪ {j}
|
⊔

|
⊔

S2 ∪ {i} w Sl(2) ∪ {j}
|
⊔

|
⊔

. . . w . . .
|
⊔

|
⊔

Sns ∪ {i} w Sl(ns) ∪ {j}

⇔ {i} w {j}



Again a sufficient condition...

Proposition Let w be a total preorder on 2N . If w satisfies the PR
property, then w is πp-aligned with every regular semivalue.

- Consider the (Shapley-aligned) total prorder wa of previous
{1, 2, 3} Aa {3} Aa {2} Aa {1, 3} Aa {2, 3} Aa {1} Aa {1, 2} Aa

∅. Note that {2} A {1}, but {1, 3} A {2, 3}.

- {1, 2, 3, 4} Ab {2, 3, 4} Ab {3, 4} Ab {4} Ab {3} Ab {2} Ab

{2, 4} Ab {1, 4} Ab {1, 3} Ab {2, 3} Ab {1, 3, 4} Ab {1, 2, 4} Ab

{1, 2, 3} Ab {1, 2} Ab {1} Ab ∅ is πp-aligned for all p but does not
satisfy the PR property.



Work in progress: Lucchetti, Moretti, Patrone (2012) A
probabilistic approach to ranking sets of interacting objects

- A new interpretation of πp-aligned total preorders in terms of
“ranking sets of objects” under uncertainty.

- Characterizations of total preorders which are πp-aligned with all
semivalues.

- Characterizations of specific πp-aligned total preorders (with or
without the comparison of ordered lists of sets)



Why not to consider probabilistic values?

A probabilistic value πp (or probabilistic power index ) π for the
game v is an n-vector πp(v) = (πp1 (v), πp2 (v), . . . , πpn(v)), such
that

πpi (v) =
∑

S∈2N\{i}

pi (S)
(
v(S ∪ {i})− v(S)

)
(1)

for each i ∈ N and S ∈ 2N\{i}, and p = (pi : 2N\{i} → R+)iinN , is
a collection of non negative real functions fulfilling the
condition

∑
S∈2N\{i} pi (S) = 1.



Again RESP...

Theorem (R. Lucchetti, S. Moretti, F. Patrone 2012)

Let N be a finite set and let w be a total preorder on 2N . Then
the following are equivalent:

1. w is aligned w.r.t. all the probabilistic values;

2. w satisfies the RESP property.



Axiom[Double Permutational Responsiveness, DPR]

Order the sets S1,S2, . . . ,Sns+ns−1 in Σs
ij ∪ Σs−1

ij when you add i
and j , respectively:

S1 ∪ {i} w Sl(1) ∪ {j}
|
⊔

w |
⊔

S2 ∪ {i} Sl(2) ∪ {j}
|
⊔

|
⊔

. . . w . . .
|
⊔

|
⊔

Sns+ns−1 ∪ {i} w Sl(ns+ns−1) ∪ {j}

⇔ {i} w {j}



A characterization with possibility of interaction

Theorem (R. Lucchetti, S. Moretti, F. Patrone 2012)

Let N be a finite set and let w be a total preorder on 2N . The
following statements are equivalent:

1) w fulfills the DPR property;

2) w is πp-aligned w.r.t. all the semivalues.

- {1, 2, 3, 4} Ab {2, 3, 4} Ab {3, 4} Ab {4} Ab {3} Ab {2} Ab

{2, 4} Ab {1, 4} Ab {1, 3} Ab {2, 3} Ab {1, 3, 4} Ab {1, 2, 4} Ab

{1, 2, 3} Ab {1, 2} Ab {1} Ab ∅ is πp-aligned for all p, is not PR,
but it is DPR.



Next steps

- generalizing: partial orders...

- particularizing: how to represent interaction on specific
applications?

- thinking of the possibility to do a kind a inverse process, not
necessarily respecting the ranking restricted to the singletons.



Thanks!
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