Computing Projective Clusters via Certificates

Cecilia Procopiuc
AT&T Labs
(joint work with Pankaj Agarwal and Kasturi Varadarajan)
Applications

- Shape Fitting
- Database Indexing
- Information Retrieval
- Data Compression
- Image Processing
Example
- S: set of n points
- k: integer

k-Line-Center: Find k lines l_1, \ldots, l_k that minimize

$$\max_{p \in S} \min_{1 \leq j \leq k} d(p, l_i).$$

$w^* = \text{minimum value so that } S \text{ can be covered by } k \text{ hyper-cylinders of diameter } w^*.$

Projective Clustering: Find q-dimensional flats h_1, \ldots, h_k, for some integer q.
Results

1. Most variants of projective clustering problems are **NP-Hard**: Meggido and Tamir ’82.

2. $d = 2, 3, k = 1, 2$: Houle & Toussaint ’98, Agarwal & Sharir ’96, Jaromczyk & Kowaluk ’95.

3. $k = 1$, general d, $(1 + \varepsilon)$-approx.:
 - $q = d - 1$ (width): Duncan et al. ’97, Chan ’00.
 - $q = 1$ (enclosing cyl.): Har-Peled & Varadarajan ’01, Bădoiu et al. ’02.
 - general q: Har-Peled & Varadarajan ’03.

4. General k and d:
 - $O(dk \log k)$ hyper-cylinders of diameter $8w^*$ in $\tilde{O}(d nk^3)$ time: Agarwal & Procopiuc ’00
 - k hyper-cylinders of diameter $(1 + \varepsilon)w^*$ in $\tilde{O}(nf(k, d, \varepsilon))$ time: Agarwal, Procopiuc & Varadarajan ’02.
 - k q-flats of diameter $(1 + \varepsilon)w^*$ in $dn^{O(g(k, q, \varepsilon))}$ time: Har-Peled & Varadarajan ’02.
For each flat h in optimal cover, there exists small subset Q_h s.t. $\text{subspace}(Q_h)$ contains ε-approx. flat.

Q_h: core-set of h.

$|\bigcup_h Q_h| = f(k, q, \varepsilon)$: independent of n and d!

1. Find core-sets Q_h (brute force enumeration).
2. Compute ε-approx. solution (brute force).
Certificates (Agarwal, Procopiuc & Varadarajan)

There exists small subset Q s.t. Q covered by k congruent hyper-cylinders $\Rightarrow S$ covered by the ε-expanded hyper-cylinders.

Q: certificate of S.

$|Q| = f(k, \varepsilon, d)$: independent of n!

1. Find certificate Q (iterative sampling).
2. Compute optimal solution on Q (brute force).
3. Expand to solution on S.
1-Strip Certificate

Computing Projective Clusters via Certificates
1-Strip Certificate

Computing Projective Clusters via Certificates
1-Strip Certificate
1-Strip Certificate

Computing Projective Clusters via Certificates
1-Strip Certificate

Computing Projective Clusters via Certificates
1-Strip Certificate
1-Strip Certificate
1-Strip Certificate

Computing Projective Clusters via Certificates
1-Strip Certificate
2-Strip Certificate
2-Strip Certificate
2-Strip Certificate
2-Strip Certificate

Computing Projective Clusters via Certificates
• P: set of points on \textit{real line}.

• $Q \subseteq P$: \textit{k-certificate} if \textit{any k intervals} that cover Q can be ε-expanded to cover P.

\textbf{Claim:} A k-strip certificate can be obtained from the union of k-certificates of all grid lines.
Line Certificate

\[\varepsilon \Delta / 2 \]

\[\Delta \]

\[k = 2 \]
Line Certificate

\[k = 2 \]
Line Certificate

Computing Projective Clusters via Certificates

\[k = 2 \]
Lemma 1: For any set of points in \mathbb{R}, there exists a line certificate of size $(k/\varepsilon)^{O(k)}$.

Lemma 2: For any set of points in \mathbb{R}^d, there exists a certificate of size $k^{O(k)}/\varepsilon^{O(d+k)}$.

- Iterative random sampling
Open Problems

1. Certificates of smaller size?
2. Constructive proof for certificates.
3. Extensions to q-flats.