Forensic DNA analysis and multi-locus match probability in finite populations:
A fundamental difference between the Moran and Wright-Fisher models

Yun S. Song
Departments of EECS and Statistics
UC Berkeley

DIMACS
April 27, 2009
Outline

1. Introduction
 - Random match probability
 - Cold hit

2. Models of Random Mating
 - Recurrence equations

3. Graphical Framework
 - Match graphs
 - Operations on graphs
 - Topological ordering and graph enumeration

4. Results
 - Accuracy of the product rule
 - Wright-Fisher vs. Moran
 - Excluding siblings

5. Other Works
 - Perfect Monogamy Model
 - Subdivided populations
Given
Two random individuals from a population.

Question
What is the probability that their DNA profiles match?

Art source: René Magritte
Forensic science context

The question that often arises is the extent to which a complete match of DNA profiles between a suspect and a crime-scene sample indicates that the suspect is the source of the sample.

Art source: René Magritte
Match probability depends on many factors, including:

- The number of loci in the DNA profile.
- Mutation rates.
- Population history.

Art source: René Magritte
Short Tandem Repeats (a.k.a microsatellites)

Repetitions of words usually $2 \sim 6$ base-pairs in length

Simple Examples of STR:

<table>
<thead>
<tr>
<th>Word Length</th>
<th>Locus</th>
<th>DNA Repeat Sequence</th>
<th>Copy Number Variation in Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 bp</td>
<td>APOA2</td>
<td>ACACACAC\ldots AC</td>
<td>[AC]$_{8 \sim 22}$</td>
</tr>
<tr>
<td>3 bp</td>
<td>Huntingtin</td>
<td>CAGCAGCAG\ldots CAG</td>
<td>[CAG]$_{6 \sim 35}$ (Normal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[CAG]$_{36 \sim 120}$ (Pathogenic)</td>
</tr>
<tr>
<td>4 bp</td>
<td>TPOX</td>
<td>AATGAATG\ldots AATG</td>
<td>[AATG]$_{5 \sim 14}$</td>
</tr>
</tbody>
</table>

Allele

Useful genetic STR markers have a typical copy number of $10 \sim 30$. Copy numbers will be called *alleles.*
Short Tandem Repeats (a.k.a. microsatellites)

Repetitions of words usually 2 ∼ 6 base-pairs in length

Simple Examples of STR:

<table>
<thead>
<tr>
<th>Word Length</th>
<th>Locus</th>
<th>DNA Repeat Sequence</th>
<th>Copy Number Variation in Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 bp</td>
<td>APOA2</td>
<td>ACACACAC· · · AC</td>
<td>[AC]$_{8\sim22}$</td>
</tr>
<tr>
<td>3 bp</td>
<td>Huntingtin</td>
<td>CAGCAGCAG· · · CAG</td>
<td>[CAG]$_{6\sim35}$ (Normal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[CAG]$_{36\sim120}$ (Pathogenic)</td>
</tr>
<tr>
<td>4 bp</td>
<td>TPOX</td>
<td>AATGAATG· · · AATG</td>
<td>[AATG]$_{5\sim14}$</td>
</tr>
</tbody>
</table>

Allele

Useful genetic STR markers have a typical copy number of 10 ∼ 30. Copy numbers will be called alleles.

At present, 11 to 13 unlinked autosomal microsatellite loci are typed for forensic use.
FBI’s CODIS (COmbined DNA Index System) Short Tandem Repeat loci (tetranucleotide) AATGAATG...AATG

Mostly on different chromosomes

Amelogenin Gene
On X: 106 bp
On Y: 112 bp

Source: http://www.cstl.nist.gov/div831/strbase/fbicore.htm
Example: an individual’s CODIS profile

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Locus</th>
<th>Genotype (Unordered Pair)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>TPOX</td>
<td>7, 8</td>
</tr>
<tr>
<td>3</td>
<td>D3S1358</td>
<td>15, 18</td>
</tr>
<tr>
<td>4</td>
<td>FGA</td>
<td>19, 24</td>
</tr>
<tr>
<td>5</td>
<td>D5S818</td>
<td>11, 13</td>
</tr>
<tr>
<td>5</td>
<td>CSF1PO</td>
<td>11, 11</td>
</tr>
<tr>
<td>7</td>
<td>D7S820</td>
<td>10, 11</td>
</tr>
<tr>
<td>8</td>
<td>D8S1179</td>
<td>12, 13</td>
</tr>
<tr>
<td>11</td>
<td>THO1</td>
<td>8, 12</td>
</tr>
<tr>
<td>12</td>
<td>VWA</td>
<td>16, 16</td>
</tr>
<tr>
<td>13</td>
<td>D13S317</td>
<td>11, 16</td>
</tr>
<tr>
<td>16</td>
<td>D16S539</td>
<td>11, 14</td>
</tr>
<tr>
<td>18</td>
<td>D18S51</td>
<td>12, 13</td>
</tr>
<tr>
<td>21</td>
<td>D21S11</td>
<td>29, 31</td>
</tr>
<tr>
<td></td>
<td>AMEL</td>
<td>106bp, 112bp</td>
</tr>
</tbody>
</table>
The DNA Identification Act of 1994

Authorized the FBI to establish a national DNA index for law enforcement purposes.

Combined DNA Index System (operational since 1998)

Three levels of hierarchy

1. **National** DNA Index System
 Allows labs between states to exchange DNA profiles

2. **State** DNA Index System
 Allows labs within states to exchange DNA profiles

3. **Local** DNA Index System
 DNA profiles are collected at the local level
Number of “offender” profiles

<table>
<thead>
<tr>
<th></th>
<th>As of Oct 2007</th>
<th>As of Dec 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nation-wide</td>
<td>5,265,258</td>
<td>6,539,919</td>
</tr>
</tbody>
</table>

Usually, but not always, conviction for some type of criminal offense is required to be included in the database.
Number of “offender” profiles

<table>
<thead>
<tr>
<th>State</th>
<th>As of Oct 2007</th>
<th>As of Dec 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nation-wide</td>
<td>5,265,258</td>
<td>6,539,919</td>
</tr>
<tr>
<td>California</td>
<td>893,147</td>
<td>1,073,768</td>
</tr>
<tr>
<td>Florida</td>
<td>397,500</td>
<td>533,670</td>
</tr>
<tr>
<td>Texas</td>
<td>314,366</td>
<td>395,374</td>
</tr>
<tr>
<td>Virginia</td>
<td>260,403</td>
<td>285,851</td>
</tr>
<tr>
<td>Illinois</td>
<td>276,339</td>
<td>320,132</td>
</tr>
<tr>
<td>Michigan</td>
<td>221,354</td>
<td>255,274</td>
</tr>
<tr>
<td>New York</td>
<td>216,083</td>
<td>294,498</td>
</tr>
<tr>
<td>Wyoming</td>
<td>197</td>
<td>8,722</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>834</td>
<td>3,890</td>
</tr>
</tbody>
</table>

Usually, but not always, conviction for some type of criminal offense is required to be included in the database.
Number of “offender” profiles

<table>
<thead>
<tr>
<th></th>
<th>As of Oct 2007</th>
<th>As of Dec 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nation-wide</td>
<td>5,265,258</td>
<td>6,539,919</td>
</tr>
<tr>
<td>California</td>
<td>893,147</td>
<td>1,073,768</td>
</tr>
<tr>
<td>Florida</td>
<td>397,500</td>
<td>533,670</td>
</tr>
<tr>
<td>Texas</td>
<td>314,366</td>
<td>395,374</td>
</tr>
<tr>
<td>Virginia</td>
<td>260,403</td>
<td>285,851</td>
</tr>
<tr>
<td>Illinois</td>
<td>276,339</td>
<td>320,132</td>
</tr>
<tr>
<td>Michigan</td>
<td>221,354</td>
<td>255,274</td>
</tr>
<tr>
<td>New York</td>
<td>216,083</td>
<td>294,498</td>
</tr>
<tr>
<td>Wyoming</td>
<td>197</td>
<td>8,722</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>834</td>
<td>3,890</td>
</tr>
</tbody>
</table>

Usually, **but not always**, conviction for some type of criminal offense is required to be included in the database.
L-Locus Match Probability (MP)

The probability of a complete match at \(L \) unlinked loci between two individuals randomly chosen from a population.
Random match probability

L-Locus Match Probability (MP)

The probability of a complete match at L unlinked loci between two individuals randomly chosen from a population.

The Product Rule (currently used in US criminal courts)

- Assume **statistical independence** across all L loci.
- Multiply the 1-locus MPs at those loci.
Random match probability

L-Locus Match Probability (MP)

The probability of a complete match at L unlinked loci between two individuals randomly chosen from a population.

The Product Rule (currently used in US criminal courts)

- Assume *statistical independence* across all L loci.
- Multiply the 1-locus MPs at those loci.

Warning

In a *finite population*, the genealogical relationships of individuals can create *statistical non-independence* of alleles at unlinked loci.
L-Locus Match Probability (MP)

The probability of a complete match at L unlinked loci between two individuals randomly chosen from a population.

The Product Rule (currently used in US criminal courts)

- Assume **statistical independence** across all L loci.
- Multiply the 1-locus MPs at those loci.

Warning

In a **finite population**, the genealogical relationships of individuals can create **statistical non-independence** of alleles at unlinked loci.

Question

Then, how accurate is the product rule, which assumes independence between loci?
Question on Question

In any case, everyone believes that the true 13-locus MP is a very small number. Then, why are we interested in computing it accurately?
Cold Hit

A crime-scene sample is found to match a known profile in a database, resulting in the identification of a suspect based only on genetic evidence.
Cold hits and erroneous attribution

- Consider a **hypothetical series** of cold hit cases.
Cold hits and erroneous attribution

- Consider a hypothetical series of cold hit cases.
- The average probability that there exists another person in the population whose profile matches the crime-scene sample but who is not in the database is

\[\frac{1 + n \times AMP - (1 - AMP)^n}{1 + n \times AMP}, \]

where \(AMP \) is the average match probability and \(n \) is the total number of people not in the database.

(Song, Patil, Murphy, Slatkin, J. Forensic Sciences, 2009.)
Cold hits and erroneous attribution

- Consider a **hypothetical series** of cold hit cases.
- The average probability that there exists another person in the population whose profile matches the crime-scene sample but who is not in the database is

\[
\frac{1 + n \times AMP - (1 - AMP)^n}{1 + n \times AMP},
\]

where *AMP* is the average match probability and *n* is the total number of people not in the database.

(Song, Patil, Murphy, Slatkin, *J. Forensic Sciences*, 2009.)

- This probability is approximately equal to \(2n \times AMP\).
Cold hits and erroneous attribution

- Consider a hypothetical series of cold hit cases.
- The average probability that there exists another person in the population whose profile matches the crime-scene sample but who is not in the database is

\[
\frac{1 + n \times AMP - (1 - AMP)^n}{1 + n \times AMP},
\]

where \(AMP\) is the average match probability and \(n\) is the total number of people not in the database.

(Song, Patil, Murphy, Slatkin, J. Forensic Sciences, 2009.)

- This probability is approximately equal to \(2n \times AMP\).
- If the \(AMP\) is as large as \(10^{-9}\), there is a considerable risk that someone not in the database has the same profile.
Challenge

Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

- We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
- We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)
- We will describe a striking fundamental difference between the two models which becomes transparent only when many loci are considered in a finite population.
- We will discuss the accuracy of the product rule.
- If time permits, we will discuss the biparental diploid model (Chang, 1999).
Challenge

Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

1. We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
2. We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)
3. We will describe a striking fundamental difference between the two models which becomes transparent only when many loci are considered in a finite population.
4. We will discuss the accuracy of the product rule.
5. If time permits, we will discuss the biparental diploid model (Chang, 1999).
Challenge

Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

1. We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
2. We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)
3. We will describe a striking fundamental difference between the two models which becomes transparent only when many loci are considered in a finite population.
4. We will discuss the accuracy of the product rule.
5. If time permits, we will discuss the biparental diploid model (Chang, 1999).
Challenge

Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

1. We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
2. We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)
3. We will describe a striking fundamental difference between the two models which becomes transparent only when many loci are considered in a finite population.
4. We will discuss the accuracy of the product rule.
5. If time permits, we will discuss the biparental diploid model (Chang, 1999).
Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

1. We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
2. We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)
3. We will describe a striking fundamental difference between the two models which becomes transparent only when many loci are considered in a finite population.
4. We will discuss the accuracy of the product rule.
5. If time permits, we will discuss the biparental diploid model (Chang, 1999).
Challenge
Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk
1. We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
2. We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)
3. We will describe a striking fundamental difference between the two models which becomes transparent only when many loci are considered in a finite population.
4. We will discuss the accuracy of the product rule.
5. If time permits, we will discuss the biparental diploid model (Chang, 1999).
Outline

1. Introduction
 - Random match probability
 - Cold hit

2. Models of Random Mating
 - Recurrence equations

3. Graphical Framework
 - Match graphs
 - Operations on graphs
 - Topological ordering and graph enumeration

4. Results
 - Accuracy of the product rule
 - Wright-Fisher vs. Moran
 - Excluding siblings

5. Other Works
 - Perfect Monogamy Model
 - Subdivided populations
Assumptions

- Constant population size.
- Random mating.
- Infinite alleles model of mutation.

<table>
<thead>
<tr>
<th>Time</th>
<th>Population of $2N$ gametes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t-3$</td>
<td>o o o o o o o o - - - o</td>
</tr>
<tr>
<td>$t-2$</td>
<td>o o o o o o o o - - - o</td>
</tr>
<tr>
<td>$t-1$</td>
<td>o o o o o o o o - - - o</td>
</tr>
<tr>
<td>t</td>
<td>o o o o o o o o - - - o</td>
</tr>
</tbody>
</table>

A *gamete* refers to a collection of alleles at 13 unlinked loci.
Generating a newborn

Randomly sample two gametes, each with replacement, and create a new gamete as an assortment of the two samples.

Generation t

Parental Gamete x

Parental Gamete y

Generation $t + 1$

Child Gamete
Infinite-alleles model of mutation

With probability μ_i, the child gamete has an allele (copy number) at locus i that has never been seen before.
Wright-Fisher model
- $2N_{WF}$ gametes.
- Non-overlapping generations. (The entire population gets replaced every generation.)

Moran model
- $2N_{M}$ gametes.
- Overlapping generations. (Exactly one individual gets replaced every generation. All other individuals survive to the next generation.)

Wright-Fisher Model

Moran Model
Wright-Fisher model
- $2N_{WF}$ gametes.
- Non-overlapping generations. (The entire population gets replaced every generation.)

Moran model
- $2N_{M}$ gametes.
- Overlapping generations. (Exactly one individual gets replaced every generation. All other individuals survive to the next generation.)

Facts
1. For the two models to have the same effective population size N_e, we need to set $N_M = 2N_{WF}$.
2. The two models converge to the same diffusion limit.
Genotypic Match Probability

Randomly choose two pairs of gametes without replacement. At stationarity, what is the probability that the two pairs have a complete genotypic match at L unlinked loci?

Haplotypic Match Probability

Randomly choose two gametes without replacement. At stationarity, what is the probability that the two gametes have a complete copy number match at L unlinked loci?

<table>
<thead>
<tr>
<th>Locus</th>
<th>Genotype</th>
<th>Locus</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7,8</td>
<td>1</td>
<td>7,8</td>
</tr>
<tr>
<td>2</td>
<td>15,16</td>
<td>2</td>
<td>15,16</td>
</tr>
<tr>
<td>3</td>
<td>19,20</td>
<td>3</td>
<td>19,20</td>
</tr>
<tr>
<td>4</td>
<td>11,11</td>
<td>4</td>
<td>11,11</td>
</tr>
<tr>
<td>5</td>
<td>29,31</td>
<td>5</td>
<td>29,31</td>
</tr>
</tbody>
</table>
Genotypic Match Probability

Randomly choose two pairs of gametes without replacement. At stationarity, what is the probability that the two pairs have a complete genotypic match at L unlinked loci?

Haplotypic Match Probability

Randomly choose two gametes without replacement. At stationarity, what is the probability that the two gametes have a complete copy number match at L unlinked loci?

<table>
<thead>
<tr>
<th>Locus</th>
<th>Copy Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locus</th>
<th>Copy Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
</tr>
</tbody>
</table>
Consider two gametes \(x = (x_1, \ldots, x_L) \) and \(y = (y_1, \ldots, y_L) \).

Two possible ancestries for locus \(i \) under the WF model:

- At \(t = t - 1 \):
 - Probability: \(\frac{1}{2N_{WF}} \)

- At \(t = t \):
 - Probability: \(\frac{2N_{WF} - 1}{2N_{WF}} \)

Recurrence equation:

\[
P(x_i = y_i) = (1 - \mu_i)^2 \left[\frac{1}{2N_{WF}} + \frac{2N_{WF} - 1}{2N_{WF}} P(x_i' = y_i') \right]
\]

At stationarity, \(P(x_i = y_i) = P(x_i' = y_i') \), so we can solve for the stationary probability \(P(x_i = y_i) \).
Consider two gametes $x = (x_1, \ldots, x_L)$ and $y = (y_1, \ldots, y_L)$.

Two possible ancestries for locus i under the WF model:

- At stationarity, $\mathbb{P}(x_i = y_i) = \mathbb{P}(x'_i = y'_i)$, so we can solve for the stationary probability $\mathbb{P}(x_i = y_i)$.

Recurrence equation:

$$
\mathbb{P}(x_i = y_i) = (1 - \mu_i)^2 \left[\frac{1}{2N_{WF}} + \frac{2N_{WF} - 1}{2N_{WF}} \mathbb{P}(x'_i = y'_i) \right]
$$
Consider two gametes \(x = (x_1, \ldots, x_L) \) and \(y = (y_1, \ldots, y_L) \).

Two possible ancestries for locus \(i \) under the WF model

\[
\begin{align*}
\text{Time} & \quad t - 1 & t \\
\begin{array}{c}
\circ \quad \circ \quad \circ \quad \circ \quad \cdots \quad \circ \\
\circ \quad \circ \quad \circ \quad \circ \quad \cdots \quad \circ \\
x & \quad y & \quad \circ \quad \circ \quad \circ \quad \circ \\
\circ \quad \circ \quad \circ \quad \circ \quad \cdots \quad \circ \\
\quad & \quad & \quad \quad & \quad \\
\end{array}
\end{align*}
\]

Probability:
\[
\frac{1}{2N_{WF}} \quad \quad \quad \frac{2N_{WF} - 1}{2N_{WF}}
\]

Recurrence equation

\[
\mathbb{P}(x_i = y_i) = (1 - \mu_i)^2 \left[\frac{1}{2N_{WF}} + \frac{2N_{WF} - 1}{2N_{WF}} \mathbb{P}(x'_i = y'_i) \right]
\]

At stationarity, \(\mathbb{P}(x_i = y_i) = \mathbb{P}(x'_i = y'_i) \), so we can solve for the stationary probability \(\mathbb{P}(x_i = y_i) \).
The ultimate goal

Want to compute $P[(x_1, \ldots, x_L) = (y_1, \ldots, y_L)]$.

General strategy

Given a match relation R, use

$$P(R) = \sum_{\text{Ancestry}} P(R | \text{Ancestry}) P(\text{Ancestry})$$

to generate a recurrence equation of form

$$P(R) = \sum_{k} c_k P(R'_k),$$

where c_k are coefficients which depend on N and μ_1, \ldots, μ_L.

Laurie and Weir (2003) adopted the same strategy.

Problem

For large L, there are many ancestries and many match relations to consider.
The ultimate goal
Want to compute $\mathbb{P}[(x_1, \ldots, x_L) = (y_1, \ldots, y_L)]$.

General strategy
Given a match relation R, use

$$\mathbb{P}(R) = \sum_{\text{Ancestry}} \mathbb{P}(R \mid \text{Ancestry}) \mathbb{P}(\text{Ancestry})$$

to generate a recurrence equation of form $\mathbb{P}(R) = \sum_k c_k \mathbb{P}(R'_k)$,

where c_k are coefficients which depend on N and μ_1, \ldots, μ_L.

Laurie and Weir (2003) adopted the same strategy.

Problem
For large L, there are many ancestries and many match relations to consider.
The ultimate goal

Want to compute $\mathbb{P}[(x_1, \ldots, x_L) = (y_1, \ldots, y_L)]$.

Problem

For large L, there are many ancestries and many match relations to consider.
Question

How many inequivalent match relations do we need to consider for the 13-locus haplotypic match probability computation?
Question

How many inequivalent match relations do we need to consider for the 13-locus haplotypic match probability computation?

General case

For arbitrary mutation rates μ_1, \ldots, μ_{13}, we need to consider 2021616201559793 inequivalent match relations.
Question

How many inequivalent match relations do we need to consider for the 13-locus haplotypic match probability computation?

General case

For arbitrary mutation rates μ_1, \ldots, μ_{13}, we need to consider 2021616201559793 inequivalent match relations.

A special case

For $\mu_1 = \mu_2 = \cdots = \mu_{13}$, we need to consider 3112753 inequivalent match relations.
Recurrence equations

Question

How many inequivalent match relations do we need to consider for the 13-locus haplotypic match probability computation?

General case

For arbitrary mutation rates \(\mu_1, \ldots, \mu_{13} \), we need to consider \(20,216,162,015,597,93 \) inequivalent match relations.

A special case

For \(\mu_1 = \mu_2 = \cdots = \mu_{13} \), we need to consider \(311,275,3 \) inequivalent match relations.

Question

How do we generate the recurrence relations satisfied by those match relations?
Outline

1. Introduction
 - Random match probability
 - Cold hit

2. Models of Random Mating
 - Recurrence equations

3. Graphical Framework
 - Match graphs
 - Operations on graphs
 - Topological ordering and graph enumeration

4. Results
 - Accuracy of the product rule
 - Wright-Fisher vs. Moran
 - Excluding siblings

5. Other Works
 - Perfect Monogamy Model
 - Subdivided populations
We have developed a simple and flexible graphical framework for computing match probabilities. (Song and Slatkin, 2007)

From match probabilities to match graphs

- **Match graph:**
 - **Vertex:** Create a vertex labeled x for gamete x.
 - **Edge:** Draw an undirected edge labeled i between vertices x and y if and only if $x_i = y_i$.

- Two **fully-labeled** graphs (i.e., all vertices and edges are labeled) are equivalent if they are isomorphic as **edge-labeled** graphs (i.e., ignoring vertex labels).

$$\mathbb{P}(x_1 = y_1, x_2 = y_2, x_3 = z_3)$$
$$\mathbb{P}(x_1 = y_1, x_2 = y_2, y_3 = z_3)$$

$G_1 = \begin{array}{c}
 x \\
 y \\
 z
\end{array}$

$G_2 = \begin{array}{c}
 x \\
 y \\
 z
\end{array}$
Observation
There is a 1-to-1 correspondence between the set of L-locus match graphs and the set of loopless multigraphs with L edges and non-isolated vertices.

General case
For arbitrary mutation rates μ_1, \ldots, μ_{13}, we need to consider loopless multigraphs with k labeled edges, for $k = 1, \ldots, 13$.

A special case
For $\mu_1 = \mu_2 = \cdots = \mu_{13}$, we need to consider loopless multigraphs with k unlabeled edges, for $k = 1, \ldots, 13$.
Observation
There is a 1-to-1 correspondence between the set of L-locus match graphs and the set of loopless multigraphs with L edges and non-isolated vertices.

Looped multigraph

Loopless multigraph

General case
For arbitrary mutation rates μ_1, \ldots, μ_{13}, we need to consider loopless multigraphs with k labeled edges, for $k = 1, \ldots, 13$.

A special case
For $\mu_1 = \mu_2 = \cdots = \mu_{13}$, we need to consider loopless multigraphs with k unlabeled edges, for $k = 1, \ldots, 13$.
Observation

There is a 1-to-1 correspondence between the set of L-locus match graphs and the set of loopless multigraphs with L edges and non-isolated vertices.

Looped multigraph

Loopless multigraph

General case

For arbitrary mutation rates μ_1, \ldots, μ_{13}, we need to consider loopless multigraphs with k labeled edges, for $k = 1, \ldots, 13$.

A special case

For $\mu_1 = \mu_2 = \cdots = \mu_{13}$, we need to consider loopless multigraphs with k unlabeled edges, for $k = 1, \ldots, 13$.

For $\mu_1 = \mu_2 = \cdots = \mu_{13}$, we need to consider loopless multigraphs with k unlabeled edges, for $k = 1, \ldots, 13$.

Match graphs

Number of loopless multigraphs with \(L \) edges

<table>
<thead>
<tr>
<th>(L)</th>
<th>Edge labeled</th>
<th>Edge unlabeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>139</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>1 750</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>29 388</td>
<td>212</td>
</tr>
<tr>
<td>7</td>
<td>624 889</td>
<td>686</td>
</tr>
<tr>
<td>8</td>
<td>16 255 738</td>
<td>2 389</td>
</tr>
<tr>
<td>9</td>
<td>504 717 929</td>
<td>8 682</td>
</tr>
<tr>
<td>10</td>
<td>18 353 177 160</td>
<td>33 160</td>
</tr>
<tr>
<td>11</td>
<td>769 917 601 384</td>
<td>132 277</td>
</tr>
<tr>
<td>12</td>
<td>36 803 030 137 203</td>
<td>550 835</td>
</tr>
<tr>
<td>13</td>
<td>1 984 024 379 014 193</td>
<td>2 384 411</td>
</tr>
<tr>
<td>Total</td>
<td>2 021 616 201 559 793</td>
<td>3 112 753</td>
</tr>
</tbody>
</table>

Labelle (2000), Harary and Palmer (1973)
Finding recurrence equations

By performing a set of prescribed operations on a given graph at generation t, we determine how it is related to a linear combination of graphs at generation $t - 1$.

1. **Vertex Split** (inheritance pattern across loci for each gamete)
2. **Vertex Merge** (sharing of parents by two or more gametes)
Finding recurrence equations

By performing a set of prescribed operations on a given graph at generation t, we determine how it is related to a linear combination of graphs at generation $t - 1$.

1. **Vertex Split** (inheritance pattern across loci for each gamete)
2. **Vertex Merge** (sharing of parents by two or more gametes)

Split-merge operations have associated probabilities which appear as coefficients in recurrence equations.
Summary

Vertex Split

\[G_P \rightarrow G_{S_1} \rightarrow G_{S_2} \rightarrow G_{S_3} \]

time \(t \)

Vertex Merge

\[G_{M_1} \rightarrow G_{M_2} \rightarrow G_{M_3} \rightarrow G_{M_4} \]

time \(t - 1 \)
Clearly, these graphs are isomorphic.
How about these?
Topological Ordering of the System

A closer look at the 2-locus SCC for the Moran model
Topological ordering and graph enumeration

1-locus case: 1 equation

Wright-Fisher model:

\[
\begin{align*}
&= (1 - \mu)^2 \left[\frac{2N_{WF} - 1}{2N_{WF}} \right] + \frac{1}{2N_{WF}}
\end{align*}
\]

Moran model:

\[
\begin{align*}
&= \left[\frac{2N_M - 2}{2N_M} + \frac{2N_M - 1}{(2N_M)^2} 2(1 - \mu) \right] + \frac{2(1 - \mu)}{(2N_M)^2}
\end{align*}
\]
Topological ordering and graph enumeration

2-locus case: 3 coupled equations

\[
\begin{align*}
2\text{-locus case: } & \text{3 coupled equations} \\
1\text{-locus match graph appears as a known constant.}
\end{align*}
\]
Topological ordering and graph enumeration

Topological Ordering of the System

- **4-locus**
 - Strongly Connected Component

3-locus

1-locus and 2-locus match graphs are treated as known constants.

2-locus

1-locus

3-locus case: 8 coupled equations

- 1-locus and 2-locus match graphs are treated as known constants.
4-locus case: 23 coupled equations

So and so forth.
WF and Moran models have exactly the same set of match graphs.

But, the WF model has significantly more directed edges in each strongly connected component.
WF and Moran models have exactly the same set of match graphs.

But, the WF model has significantly more directed edges in each strongly connected component.
Our graphical approach makes the combinatorial structure of the problem easier to understand.

We implemented our method in a fully automated program, thus reducing the chance of human error.

Related Problems

1. **Graph isomorphism** testing. (We used the *nauty* package.)
2. **Canonical encoding** of graphs.
3. **Equivalence of split-merge operations**. Two different vertex split-merge operations on a graph with symmetries may produce isomorphic match graphs.
4. **Solving a large linear system of equations**. (We used the iterative Successive Over-Relaxation method.)
Outline

1. Introduction
 - Random match probability
 - Cold hit

2. Models of Random Mating
 - Recurrence equations

3. Graphical Framework
 - Match graphs
 - Operations on graphs
 - Topological ordering and graph enumeration

4. Results
 - Accuracy of the product rule
 - Wright-Fisher vs. Moran
 - Excluding siblings

5. Other Works
 - Perfect Monogamy Model
 - Subdivided populations
Accuracy of the product rule

Moran model MPs for $N_e = 10,000$ and $\mu_i = \mu$ for all loci i:

<table>
<thead>
<tr>
<th>L</th>
<th>Prod. Rule</th>
<th>True $MP(L)$ ($\mu = 1 \times 10^{-4}$)</th>
<th>Prod. Rule</th>
<th>True $MP(L)$ ($\mu = 2 \times 10^{-4}$)</th>
<th>Prod. Rule</th>
<th>True $MP(L)$ ($\mu = 3 \times 10^{-4}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.00×10^{-1}</td>
<td>2.00×10^{-1}</td>
<td>1.11×10^{-1}</td>
<td>1.11×10^{-1}</td>
<td>7.69×10^{-2}</td>
<td>7.69×10^{-2}</td>
</tr>
<tr>
<td>2</td>
<td>4.00×10^{-2}</td>
<td>4.00×10^{-2}</td>
<td>1.23×10^{-2}</td>
<td>1.24×10^{-2}</td>
<td>5.91×10^{-3}</td>
<td>5.94×10^{-3}</td>
</tr>
<tr>
<td>3</td>
<td>8.00×10^{-3}</td>
<td>8.01×10^{-3}</td>
<td>1.37×10^{-3}</td>
<td>1.38×10^{-3}</td>
<td>4.55×10^{-4}</td>
<td>4.66×10^{-4}</td>
</tr>
<tr>
<td>4</td>
<td>1.60×10^{-3}</td>
<td>1.61×10^{-3}</td>
<td>1.52×10^{-4}</td>
<td>1.59×10^{-4}</td>
<td>3.50×10^{-5}</td>
<td>4.03×10^{-5}</td>
</tr>
<tr>
<td>5</td>
<td>3.20×10^{-4}</td>
<td>3.25×10^{-4}</td>
<td>1.69×10^{-5}</td>
<td>2.01×10^{-5}</td>
<td>2.69×10^{-6}</td>
<td>5.29×10^{-6}</td>
</tr>
<tr>
<td>6</td>
<td>6.40×10^{-5}</td>
<td>6.68×10^{-5}</td>
<td>1.88×10^{-6}</td>
<td>3.51×10^{-6}</td>
<td>2.07×10^{-7}</td>
<td>1.52×10^{-6}</td>
</tr>
<tr>
<td>7</td>
<td>1.28×10^{-5}</td>
<td>1.44×10^{-5}</td>
<td>2.09×10^{-7}</td>
<td>1.08×10^{-6}</td>
<td>1.59×10^{-8}</td>
<td>7.00×10^{-7}</td>
</tr>
<tr>
<td>8</td>
<td>2.56×10^{-6}</td>
<td>3.48×10^{-6}</td>
<td>2.32×10^{-8}</td>
<td>4.94×10^{-7}</td>
<td>1.22×10^{-9}</td>
<td>3.63×10^{-7}</td>
</tr>
<tr>
<td>9</td>
<td>5.11×10^{-7}</td>
<td>1.05×10^{-6}</td>
<td>2.57×10^{-9}</td>
<td>2.60×10^{-7}</td>
<td>9.39×10^{-11}</td>
<td>1.93×10^{-7}</td>
</tr>
<tr>
<td>10</td>
<td>1.02×10^{-7}</td>
<td>4.16×10^{-7}</td>
<td>2.86×10^{-10}</td>
<td>1.42×10^{-7}</td>
<td>7.22×10^{-12}</td>
<td>1.03×10^{-7}</td>
</tr>
<tr>
<td>11</td>
<td>2.05×10^{-8}</td>
<td>2.06×10^{-7}</td>
<td>3.18×10^{-11}</td>
<td>7.84×10^{-8}</td>
<td>5.55×10^{-13}</td>
<td>5.54×10^{-8}</td>
</tr>
<tr>
<td>12</td>
<td>4.09×10^{-9}</td>
<td>1.15×10^{-7}</td>
<td>3.53×10^{-12}</td>
<td>4.35×10^{-8}</td>
<td>4.27×10^{-14}</td>
<td>2.98×10^{-8}</td>
</tr>
<tr>
<td>13</td>
<td>8.18×10^{-10}</td>
<td>6.69×10^{-8}</td>
<td>3.92×10^{-13}</td>
<td>2.41×10^{-8}</td>
<td>3.28×10^{-15}</td>
<td>1.60×10^{-8}</td>
</tr>
</tbody>
</table>

Recently, we succeeded in computing haplotypic MPs for up to 10 loci in the WF model, and up to 13 loci in the Moran model.
(Bhaskar and Song, *ISMB 2009, in press*)
Accuracy of the product rule

Moran model MPs for $N_e = 10,000$ and $\mu_i = \mu$ for all loci i:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\mu = 1 \times 10^{-4}$</td>
<td></td>
<td>$\mu = 2 \times 10^{-4}$</td>
<td></td>
<td>$\mu = 3 \times 10^{-4}$</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.00×10^{-1}</td>
<td>2.00×10^{-1}</td>
<td>1.11×10^{-1}</td>
<td>1.11×10^{-1}</td>
<td>7.69×10^{-2}</td>
<td>7.69×10^{-2}</td>
</tr>
<tr>
<td>2</td>
<td>4.00×10^{-2}</td>
<td>4.00×10^{-2}</td>
<td>1.23×10^{-2}</td>
<td>1.24×10^{-2}</td>
<td>5.91×10^{-3}</td>
<td>5.94×10^{-3}</td>
</tr>
<tr>
<td>3</td>
<td>8.00×10^{-3}</td>
<td>8.01×10^{-3}</td>
<td>1.37×10^{-3}</td>
<td>1.38×10^{-3}</td>
<td>4.55×10^{-4}</td>
<td>4.66×10^{-4}</td>
</tr>
<tr>
<td>4</td>
<td>1.60×10^{-3}</td>
<td>1.61×10^{-3}</td>
<td>1.52×10^{-4}</td>
<td>1.59×10^{-4}</td>
<td>3.50×10^{-5}</td>
<td>4.03×10^{-5}</td>
</tr>
<tr>
<td>5</td>
<td>3.20×10^{-4}</td>
<td>3.25×10^{-4}</td>
<td>1.69×10^{-5}</td>
<td>2.01×10^{-5}</td>
<td>2.69×10^{-6}</td>
<td>5.29×10^{-6}</td>
</tr>
<tr>
<td>6</td>
<td>6.40×10^{-5}</td>
<td>6.68×10^{-5}</td>
<td>1.88×10^{-6}</td>
<td>3.51×10^{-6}</td>
<td>2.07×10^{-7}</td>
<td>1.52×10^{-6}</td>
</tr>
<tr>
<td>7</td>
<td>1.28×10^{-5}</td>
<td>1.44×10^{-5}</td>
<td>2.09×10^{-7}</td>
<td>1.08×10^{-6}</td>
<td>1.59×10^{-8}</td>
<td>7.00×10^{-7}</td>
</tr>
<tr>
<td>8</td>
<td>2.56×10^{-6}</td>
<td>3.48×10^{-6}</td>
<td>2.32×10^{-8}</td>
<td>4.94×10^{-7}</td>
<td>1.22×10^{-9}</td>
<td>3.63×10^{-7}</td>
</tr>
<tr>
<td>9</td>
<td>5.11×10^{-7}</td>
<td>1.05×10^{-6}</td>
<td>2.57×10^{-9}</td>
<td>2.60×10^{-7}</td>
<td>9.39×10^{-11}</td>
<td>1.93×10^{-7}</td>
</tr>
<tr>
<td>10</td>
<td>1.02×10^{-7}</td>
<td>4.16×10^{-7}</td>
<td>2.86×10^{-10}</td>
<td>1.42×10^{-7}</td>
<td>7.22×10^{-12}</td>
<td>1.03×10^{-7}</td>
</tr>
<tr>
<td>11</td>
<td>2.05×10^{-8}</td>
<td>2.06×10^{-7}</td>
<td>3.18×10^{-11}</td>
<td>7.84×10^{-8}</td>
<td>5.55×10^{-13}</td>
<td>5.54×10^{-8}</td>
</tr>
<tr>
<td>12</td>
<td>4.09×10^{-9}</td>
<td>1.15×10^{-7}</td>
<td>3.53×10^{-12}</td>
<td>4.35×10^{-8}</td>
<td>4.27×10^{-14}</td>
<td>2.98×10^{-8}</td>
</tr>
<tr>
<td>13</td>
<td>8.18×10^{-10}</td>
<td>6.69×10^{-8}</td>
<td>3.92×10^{-13}</td>
<td>2.41×10^{-8}</td>
<td>3.28×10^{-15}</td>
<td>1.60×10^{-8}</td>
</tr>
</tbody>
</table>

- For a given mutation rate μ, the product rule becomes less accurate as the number of loci increases.
- Furthermore, for a large number L of loci, a slight change in μ causes the product rule MP to decrease by a large amount.
Random Mating

Graphical Framework

Results

Other Works

Accuracy of the product rule

Moran model MPs for $N_e = 10,000$ and $\mu_i = \mu$ for all loci i:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\mu = 1 \times 10^{-4}$</td>
<td></td>
<td>$\mu = 2 \times 10^{-4}$</td>
<td></td>
<td>$\mu = 3 \times 10^{-4}$</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.00×10^{-1}</td>
<td>2.00×10^{-1}</td>
<td>1.11×10^{-1}</td>
<td>1.11×10^{-1}</td>
<td>7.69×10^{-2}</td>
<td>7.69×10^{-2}</td>
</tr>
<tr>
<td>2</td>
<td>4.00×10^{-2}</td>
<td>4.00×10^{-2}</td>
<td>1.23×10^{-2}</td>
<td>1.24×10^{-2}</td>
<td>5.91×10^{-3}</td>
<td>5.94×10^{-3}</td>
</tr>
<tr>
<td>3</td>
<td>8.00×10^{-3}</td>
<td>8.01×10^{-3}</td>
<td>1.37×10^{-3}</td>
<td>1.38×10^{-3}</td>
<td>4.55×10^{-4}</td>
<td>4.66×10^{-4}</td>
</tr>
<tr>
<td>4</td>
<td>1.60×10^{-3}</td>
<td>1.61×10^{-3}</td>
<td>1.52×10^{-4}</td>
<td>1.59×10^{-4}</td>
<td>3.50×10^{-5}</td>
<td>4.03×10^{-5}</td>
</tr>
<tr>
<td>5</td>
<td>3.20×10^{-4}</td>
<td>3.25×10^{-4}</td>
<td>1.69×10^{-5}</td>
<td>2.01×10^{-5}</td>
<td>2.69×10^{-6}</td>
<td>5.29×10^{-6}</td>
</tr>
<tr>
<td>6</td>
<td>6.40×10^{-5}</td>
<td>6.68×10^{-5}</td>
<td>1.88×10^{-6}</td>
<td>3.51×10^{-6}</td>
<td>2.07×10^{-7}</td>
<td>1.52×10^{-6}</td>
</tr>
<tr>
<td>7</td>
<td>1.28×10^{-5}</td>
<td>1.44×10^{-5}</td>
<td>2.09×10^{-7}</td>
<td>1.08×10^{-6}</td>
<td>1.59×10^{-8}</td>
<td>7.00×10^{-7}</td>
</tr>
<tr>
<td>8</td>
<td>2.56×10^{-6}</td>
<td>3.48×10^{-6}</td>
<td>2.32×10^{-8}</td>
<td>4.94×10^{-7}</td>
<td>1.22×10^{-9}</td>
<td>3.63×10^{-7}</td>
</tr>
<tr>
<td>9</td>
<td>5.11×10^{-7}</td>
<td>1.05×10^{-6}</td>
<td>2.57×10^{-9}</td>
<td>2.60×10^{-7}</td>
<td>9.39×10^{-11}</td>
<td>1.93×10^{-7}</td>
</tr>
<tr>
<td>10</td>
<td>1.02×10^{-7}</td>
<td>4.16×10^{-7}</td>
<td>2.86×10^{-10}</td>
<td>1.42×10^{-7}</td>
<td>7.22×10^{-12}</td>
<td>1.03×10^{-7}</td>
</tr>
<tr>
<td>11</td>
<td>2.05×10^{-8}</td>
<td>2.06×10^{-7}</td>
<td>3.18×10^{-11}</td>
<td>7.84×10^{-8}</td>
<td>5.55×10^{-13}</td>
<td>5.54×10^{-8}</td>
</tr>
<tr>
<td>12</td>
<td>4.09×10^{-9}</td>
<td>1.15×10^{-7}</td>
<td>3.53×10^{-12}</td>
<td>4.35×10^{-8}</td>
<td>4.27×10^{-14}</td>
<td>2.98×10^{-8}</td>
</tr>
<tr>
<td>13</td>
<td>8.18×10^{-10}</td>
<td>6.69×10^{-8}</td>
<td>3.92×10^{-13}</td>
<td>2.41×10^{-8}</td>
<td>3.28×10^{-15}</td>
<td>1.60×10^{-8}</td>
</tr>
</tbody>
</table>

- The observed homozygosity at the CODIS microsatellite loci typically ranges between 0.1 and 0.3, with the average over all 13 loci being about 0.2 (Budowle et. al, 2001).
- Under the infinite alleles model with $N_e = 10,000$, homozygosity $= 0.2$ corresponds to $\mu = 10^{-4}$.
For this value of μ, the product rule is reasonably accurate, especially for $L \leq 10$.

But, for $\mu = 2 \times 10^{-4}$, which corresponds to homozygosity = 0.11, the product rule produces considerably less accurate MPs.

Accuracy of the product rule

Moran model MPs for $N_e = 10,000$ and $\mu_i = \mu$ for all loci i:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\mu = 1 \times 10^{-4}$</td>
<td></td>
<td>$\mu = 2 \times 10^{-4}$</td>
<td></td>
<td>$\mu = 3 \times 10^{-4}$</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.00×10^{-1}</td>
<td>2.00×10^{-1}</td>
<td>1.11×10^{-1}</td>
<td>1.11×10^{-1}</td>
<td>7.69×10^{-2}</td>
<td>7.69×10^{-2}</td>
</tr>
<tr>
<td>2</td>
<td>4.00×10^{-2}</td>
<td>4.00×10^{-2}</td>
<td>1.23×10^{-2}</td>
<td>1.24×10^{-2}</td>
<td>5.91×10^{-3}</td>
<td>5.94×10^{-3}</td>
</tr>
<tr>
<td>3</td>
<td>8.00×10^{-3}</td>
<td>8.01×10^{-3}</td>
<td>1.37×10^{-3}</td>
<td>1.38×10^{-3}</td>
<td>4.55×10^{-4}</td>
<td>4.66×10^{-4}</td>
</tr>
<tr>
<td>4</td>
<td>1.60×10^{-3}</td>
<td>1.61×10^{-3}</td>
<td>1.52×10^{-4}</td>
<td>1.59×10^{-4}</td>
<td>3.50×10^{-5}</td>
<td>4.03×10^{-5}</td>
</tr>
<tr>
<td>5</td>
<td>3.20×10^{-4}</td>
<td>3.25×10^{-4}</td>
<td>1.69×10^{-5}</td>
<td>2.01×10^{-5}</td>
<td>2.69×10^{-6}</td>
<td>5.29×10^{-6}</td>
</tr>
<tr>
<td>6</td>
<td>6.40×10^{-5}</td>
<td>6.68×10^{-5}</td>
<td>1.88×10^{-6}</td>
<td>3.51×10^{-6}</td>
<td>2.07×10^{-7}</td>
<td>1.52×10^{-6}</td>
</tr>
<tr>
<td>7</td>
<td>1.28×10^{-5}</td>
<td>1.44×10^{-5}</td>
<td>2.09×10^{-7}</td>
<td>1.08×10^{-6}</td>
<td>1.59×10^{-8}</td>
<td>7.00×10^{-7}</td>
</tr>
<tr>
<td>8</td>
<td>2.56×10^{-6}</td>
<td>3.48×10^{-6}</td>
<td>2.32×10^{-8}</td>
<td>4.94×10^{-7}</td>
<td>1.22×10^{-9}</td>
<td>3.63×10^{-7}</td>
</tr>
<tr>
<td>9</td>
<td>5.11×10^{-7}</td>
<td>1.05×10^{-6}</td>
<td>2.57×10^{-9}</td>
<td>2.60×10^{-7}</td>
<td>9.39×10^{-11}</td>
<td>1.93×10^{-7}</td>
</tr>
<tr>
<td>10</td>
<td>1.02×10^{-7}</td>
<td>4.16×10^{-7}</td>
<td>2.86×10^{-10}</td>
<td>1.42×10^{-7}</td>
<td>7.22×10^{-12}</td>
<td>1.03×10^{-7}</td>
</tr>
<tr>
<td>11</td>
<td>2.05×10^{-8}</td>
<td>2.06×10^{-7}</td>
<td>3.18×10^{-11}</td>
<td>7.84×10^{-8}</td>
<td>5.55×10^{-13}</td>
<td>5.54×10^{-8}</td>
</tr>
<tr>
<td>12</td>
<td>4.09×10^{-9}</td>
<td>1.15×10^{-7}</td>
<td>3.53×10^{-12}</td>
<td>4.35×10^{-8}</td>
<td>4.27×10^{-14}</td>
<td>2.98×10^{-8}</td>
</tr>
<tr>
<td>13</td>
<td>8.18×10^{-10}</td>
<td>6.69×10^{-8}</td>
<td>3.92×10^{-13}</td>
<td>2.41×10^{-8}</td>
<td>3.28×10^{-15}</td>
<td>1.60×10^{-8}</td>
</tr>
</tbody>
</table>
The two models agree very well in the single locus case.

However, for large values of L, MPs in the Moran model can be orders of magnitude higher than that in the WF model.

This difference grows with the number of loci and mutation rates.
The same diffusion limit

Send $\mu \to 0$ and $N_e \to \infty$ while keeping $\theta = 4N_e\mu$ fixed. Then,

$$L\text{-locus MP} \to \left(\frac{1}{1 + \theta}\right)^L.$$

in both the WF and Moran models.
The same diffusion limit
Send $\mu \to 0$ and $N_e \to \infty$ while keeping $\theta = 4N_e \mu$ fixed. Then,

$$L\text{-locus MP} \to \left(\frac{1}{1 + \theta}\right)^L.$$

in both the WF and Moran models.

<table>
<thead>
<tr>
<th>L</th>
<th>$1/(1 + \theta)^L$</th>
<th>WF</th>
<th>Moran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.44×10^{-2}</td>
<td>2.44×10^{-2}</td>
<td>2.44×10^{-2}</td>
</tr>
<tr>
<td>2</td>
<td>5.95×10^{-4}</td>
<td>6.09×10^{-4}</td>
<td>6.17×10^{-4}</td>
</tr>
<tr>
<td>3</td>
<td>1.45×10^{-5}</td>
<td>1.87×10^{-5}</td>
<td>2.39×10^{-5}</td>
</tr>
<tr>
<td>4</td>
<td>3.54×10^{-7}</td>
<td>1.42×10^{-6}</td>
<td>4.41×10^{-6}</td>
</tr>
<tr>
<td>5</td>
<td>8.63×10^{-9}</td>
<td>2.88×10^{-7}</td>
<td>1.92×10^{-6}</td>
</tr>
<tr>
<td>6</td>
<td>2.11×10^{-10}</td>
<td>7.45×10^{-8}</td>
<td>9.38×10^{-7}</td>
</tr>
<tr>
<td>7</td>
<td>5.13×10^{-12}</td>
<td>1.99×10^{-8}</td>
<td>4.70×10^{-7}</td>
</tr>
<tr>
<td>8</td>
<td>1.25×10^{-13}</td>
<td>5.36×10^{-9}</td>
<td>2.39×10^{-7}</td>
</tr>
<tr>
<td>9</td>
<td>3.05×10^{-15}</td>
<td>1.45×10^{-9}</td>
<td>1.21×10^{-7}</td>
</tr>
</tbody>
</table>

Match probabilities for $N_e = 10^4$ and $\mu = 10^{-3}$.

Wright-Fisher vs. Moran
The same diffusion limit

Send $\mu \to 0$ and $N_e \to \infty$ while keeping $\theta = 4N_e\mu$ fixed. Then,

$$L\text{-locus MP} \to \left(\frac{1}{1 + \theta}\right)^L.$$

in both the WF and Moran models.

<table>
<thead>
<tr>
<th>L</th>
<th>$1/(1 + \theta)^L$</th>
<th>WF</th>
<th>Moran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.44×10^{-2}</td>
<td>2.44×10^{-2}</td>
<td>2.44×10^{-2}</td>
</tr>
<tr>
<td>2</td>
<td>5.95×10^{-4}</td>
<td>5.95×10^{-4}</td>
<td>5.95×10^{-4}</td>
</tr>
<tr>
<td>3</td>
<td>1.45×10^{-5}</td>
<td>1.45×10^{-5}</td>
<td>1.45×10^{-5}</td>
</tr>
<tr>
<td>4</td>
<td>3.54×10^{-7}</td>
<td>3.54×10^{-7}</td>
<td>3.54×10^{-7}</td>
</tr>
<tr>
<td>5</td>
<td>8.63×10^{-9}</td>
<td>8.63×10^{-9}</td>
<td>8.65×10^{-9}</td>
</tr>
<tr>
<td>6</td>
<td>2.11×10^{-10}</td>
<td>2.11×10^{-10}</td>
<td>2.20×10^{-10}</td>
</tr>
<tr>
<td>7</td>
<td>5.13×10^{-12}</td>
<td>5.34×10^{-12}</td>
<td>9.86×10^{-12}</td>
</tr>
<tr>
<td>8</td>
<td>1.25×10^{-13}</td>
<td>1.79×10^{-13}</td>
<td>2.52×10^{-12}</td>
</tr>
<tr>
<td>9</td>
<td>3.05×10^{-15}</td>
<td>1.75×10^{-14}</td>
<td>1.22×10^{-12}</td>
</tr>
</tbody>
</table>
Excluding siblings

MPs conditioned on the event that the two individuals being compared are neither full-sibs nor half-sibs.

- This computation can be carried out by restricting vertex-merge operations.
- The product rule becomes much more accurate if we are provided with the additional information that the individuals being compared are not close relatives.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\mu = 1 \times 10^{-4}$</td>
<td>2.00×10^{-1}</td>
<td>2.00×10^{-1}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.00×10^{-2}</td>
<td>4.00×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7.99×10^{-3}</td>
<td>7.99×10^{-3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.60×10^{-3}</td>
<td>1.60×10^{-3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.19×10^{-4}</td>
<td>3.20×10^{-4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.39×10^{-5}</td>
<td>6.39×10^{-5}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.28×10^{-5}</td>
<td>1.28×10^{-5}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.55×10^{-6}</td>
<td>2.56×10^{-6}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5.10×10^{-7}</td>
<td>5.12×10^{-7}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.02×10^{-7}</td>
<td>1.03×10^{-7}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
No analogous results for the Moran model.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\mu = 1 \times 10^{-4}$</td>
<td></td>
<td>$\mu = 5 \times 10^{-4}$</td>
<td></td>
<td>$\mu = 1 \times 10^{-3}$</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.00×10^{-1}</td>
<td>2.00</td>
<td>4.75×10^{-2}</td>
<td>4.75</td>
<td>2.43×10^{-2}</td>
<td>2.43</td>
</tr>
<tr>
<td>2</td>
<td>4.00×10^{-2}</td>
<td>4.00</td>
<td>2.26×10^{-3}</td>
<td>2.26</td>
<td>5.91×10^{-4}</td>
<td>5.95</td>
</tr>
<tr>
<td>3</td>
<td>7.99×10^{-3}</td>
<td>7.99</td>
<td>1.07×10^{-4}</td>
<td>1.08</td>
<td>1.44×10^{-5}</td>
<td>1.48</td>
</tr>
<tr>
<td>4</td>
<td>1.60×10^{-3}</td>
<td>1.60</td>
<td>5.11×10^{-6}</td>
<td>5.20</td>
<td>3.49×10^{-7}</td>
<td>3.93</td>
</tr>
<tr>
<td>5</td>
<td>3.19×10^{-4}</td>
<td>3.20</td>
<td>2.43×10^{-7}</td>
<td>2.54</td>
<td>8.48×10^{-9}</td>
<td>1.22</td>
</tr>
<tr>
<td>6</td>
<td>6.39×10^{-5}</td>
<td>6.39</td>
<td>1.15×10^{-8}</td>
<td>1.28</td>
<td>2.06×10^{-10}</td>
<td>5.19</td>
</tr>
<tr>
<td>7</td>
<td>1.28×10^{-5}</td>
<td>1.28</td>
<td>5.48×10^{-10}</td>
<td>6.81</td>
<td>5.01×10^{-12}</td>
<td>3.15</td>
</tr>
<tr>
<td>8</td>
<td>2.55×10^{-6}</td>
<td>2.56</td>
<td>2.61×10^{-11}</td>
<td>4.02</td>
<td>1.22×10^{-13}</td>
<td>2.39</td>
</tr>
<tr>
<td>9</td>
<td>5.10×10^{-7}</td>
<td>5.12</td>
<td>1.24×10^{-12}</td>
<td>2.76</td>
<td>2.96×10^{-15}</td>
<td>2.00</td>
</tr>
<tr>
<td>10</td>
<td>1.02×10^{-7}</td>
<td>1.03</td>
<td>5.89×10^{-14}</td>
<td>2.23</td>
<td>7.19×10^{-17}</td>
<td>1.74</td>
</tr>
</tbody>
</table>
Summary

1. For a finite population, the accuracy of multi-locus MPs predicted by the product rule is highly sensitive to mutation rates in the range of interest, while the true MPs are not.
Summary

1. For a finite population, the accuracy of multi-locus MPs predicted by the product rule is highly sensitive to mutation rates in the range of interest, while the true MPs are not.

2. We assumed an infinite alleles model, in which identity in allelic state implies identity by descent. Our work studies the effect of shared genealogies in a finite population on the joint probability of identity by descent.
Summary

1. For a finite population, the accuracy of multi-locus MPs predicted by the product rule is highly sensitive to mutation rates in the range of interest, while the true MPs are not.

2. We assumed an infinite alleles model, in which identity in allelic state implies identity by descent. Our work studies the effect of shared genealogies in a finite population on the joint probability of identity by descent.

3. We have revealed a striking difference between the Wright-Fisher and Moran models.
Summary

1. For a finite population, the accuracy of multi-locus MPs predicted by the product rule is **highly sensitive to mutation rates** in the range of interest, while the true MPs are not.

2. We assumed an infinite alleles model, in which identity in allelic state implies identity by descent. Our work studies the effect of shared genealogies in a finite population on the **joint probability of identity by descent**.

3. We have revealed a **striking difference** between the Wright-Fisher and Moran models.

4. **Genealogical interpretation?** We speculate that the times to the most recent common ancestors at unlinked loci are more correlated in the Moran model than in the WF model.
Summary

1. For a finite population, the accuracy of multi-locus MPs predicted by the product rule is highly sensitive to mutation rates in the range of interest, while the true MPs are not.

2. We assumed an infinite alleles model, in which identity in allelic state implies identity by descent. Our work studies the effect of shared genealogies in a finite population on the joint probability of identity by descent.

3. We have revealed a striking difference between the Wright-Fisher and Moran models.

4. Genealogical interpretation? We speculate that the times to the most recent common ancestors at unlinked loci are more correlated in the Moran model than in the WF model.

5. It is tempting to suspect that other quantities of interest to population genomics may be fundamentally different in the two models, especially when many loci are considered.
Outline

1. Introduction
 - Random match probability
 - Cold hit

2. Models of Random Mating
 - Recurrence equations

3. Graphical Framework
 - Match graphs
 - Operations on graphs
 - Topological ordering and graph enumeration

4. Results
 - Accuracy of the product rule
 - Wright-Fisher vs. Moran
 - Excluding siblings

5. Other Works
 - Perfect Monogamy Model
 - Subdivided populations
Using our graphical framework, we can consider other models of mating scheme.

Perfect Monogamy

Two gametes cannot be half sibs.
Using our graphical framework, we can consider other models of mating scheme.

Perfect Monogamy

Two gametes cannot be half sibs.
The perfect monogamy haploid model just described is equivalent to a biparental diploid model.

Biparental diploid model

The perfect monogamy haploid model just described is equivalent to a **biparental diploid model**.
The perfect monogamy haploid model just described is equivalent to a biparental diploid model.
Constraints on vertex merge under Perfect Monogamy

1. Two vertices joined by an edge labeled “s” may not merge.
2. Vertex merges may not produce a non-cyclic length-2 path \((\bullet \ s \ s \ \bullet)\) with both edges labeled “s”.

In a split graph \(G_S\), add a new edge labeled “s” between the pair of vertices that arose from splitting a single vertex in \(G_P\).
Perfect Monogamy Model

Perfect monogamy MP

Promiscuous mating MP

<table>
<thead>
<tr>
<th>L</th>
<th>1×10^{-4}</th>
<th>2×10^{-4}</th>
<th>3×10^{-4}</th>
<th>1×10^{-3}</th>
<th>1×10^{-2}</th>
<th>1×10^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.000</td>
<td>1.001</td>
<td>1.002</td>
<td>1.026</td>
<td>1.723</td>
<td>1.995</td>
</tr>
<tr>
<td>3</td>
<td>1.001</td>
<td>1.008</td>
<td>1.024</td>
<td>1.556</td>
<td>3.914</td>
<td>3.992</td>
</tr>
<tr>
<td>4</td>
<td>1.006</td>
<td>1.049</td>
<td>1.188</td>
<td>5.184</td>
<td>7.828</td>
<td>7.977</td>
</tr>
<tr>
<td>5</td>
<td>1.019</td>
<td>1.259</td>
<td>2.240</td>
<td>12.248</td>
<td>15.573</td>
<td>15.929</td>
</tr>
<tr>
<td>6</td>
<td>1.062</td>
<td>2.246</td>
<td>6.994</td>
<td>24.018</td>
<td>30.930</td>
<td>31.768</td>
</tr>
<tr>
<td>7</td>
<td>1.192</td>
<td>6.122</td>
<td>19.341</td>
<td>45.882</td>
<td>61.286</td>
<td>63.210</td>
</tr>
<tr>
<td>8</td>
<td>1.580</td>
<td>17.218</td>
<td>40.575</td>
<td>87.134</td>
<td>120.899</td>
<td>125.190</td>
</tr>
<tr>
<td>9</td>
<td>2.699</td>
<td>39.413</td>
<td>74.664</td>
<td>164.510</td>
<td>236.485</td>
<td>245.708</td>
</tr>
</tbody>
</table>

Summary of results

- The effect of monogamy **increases with the number of loci**.
- For a given number of loci, the effect of monogamy **increases with the mutation rate**.
Upper bounds on the effect of monogamy for L loci

Consider the Wright-Fisher model with $\mu_i = \mu$ for all loci i.

Proposition

$$\lim_{\mu \uparrow 1} \frac{L\text{-locus MP under perfect monogamy}}{L\text{-locus MP under promiscuous mating}} = 2^{L-1} + O \left(\frac{1}{N_{WF}} \right).$$
Subdivided populations

It is possible to incorporate population structure in the graphical framework.

Key idea

Use vertex-colored graphs. Different colors for different subpopulations.

(Joint work with Anna Malaspinas and Monty Slatkin.)
Recent California policy on familial search

- California recently implemented a policy for using partial DNA matches to identify potential close relatives of the individual who left a crime-scene sample.

- In addition to the 13-locus CODIS profiles, the policy also calls for using Y-linked markers to provide further evidence of relatedness.

- We just submitted a paper on the population genetics consequences of the policy. Specifically, we have an estimate on the number and ethnic distribution of false leads.

(Joint work with Erin Murphy and Monty Slatkin.)
Thank you for your attention.

Acknowledgments

UC Berkeley
Monty Slatkin (Integrative Biology)
Erin Murphy (School of Law)
Anand Bhaskar (Computer Science)
Anna Malaspinas (Integrative Biology)

Research supported in part by NIH, NSF, Alfred P. Sloan Research Fellowship, and Packard Fellowship for Science and Engineering