How big will an epidemic be?
Illuminations from a simple model

Collective Dynamics Group, Columbia University

Duncan Watts, Roby Muhamad, Daniel Medina, Peter Dodds

Sociology, Columbia
Columbia Earth Institute
Santa Fe Institute
ISERP, Columbia

> NSF
> Legg Mason
> McDonnell Foundation
> Office of Naval Research
Main questions:

For novel diseases:

A. Can we predict the size of an epidemic?

B. How important is the reproduction number R_0?
Overview:

1. The reproduction number R_0.

2. Some important aspects of real epidemics:
 - peculiar distributions of epidemic size
 - resurgence

3. Usual simple models do not fare well regarding 2.

4. A simple model incorporating movement does fare well.

5. Conclusion.
Compartment models:

SIR model of infectious disease dynamics:
Three basic states:

\begin{align*}
S &= \text{Susceptible} \\
I &= \text{Infected/Infectious} \\
R &= \text{Recovered/Removed/Refractory}
\end{align*}

\[R_0 = \text{expected number of infections due to one infective.} \]

\[R_0 \text{ has become a summary statistic for epidemics.} \]
Epidemic threshold:

If $R_0 > 1$, ‘epidemic’ occurs.

➤ Fine idea from a simple model.
R_0 and variation in epidemic sizes:

R_0 approximately same for all of the following:

1918-19 “Spanish Flu” \sim 500,000 deaths in US

1957-58 “Asian Flu” \sim 70,000 deaths in US

1968-69 “Hong Kong Flu” \sim 34,000 deaths in US

2003 “SARS Epidemic” \sim 800 deaths world-wide
Size distributions:

Size distributions are important elsewhere:

➤ earthquakes (Gutenberg-Richter law)

➤ wealth distributions

➤ city sizes, forest fires, war fatalities

➤ ‘popularity’ (books, music, websites, ideas)

(power laws distributions are common but not obligatory)
Size distributions:

What about epidemics?

➤ Simply hasn’t attracted much attention.

➤ Data not as clean as for other phenomena.
Iceland data—monthly counts, 1888–1990:

Caseload recorded monthly for range of diseases in Iceland.

Treat outbreaks separated in time as ‘novel’ diseases.
Iceland data—monthly counts, 1888–1990:

Epidemic size distributions for Measles, Rubella, Whooping Cough.

Spike near $S = 0$, relatively flat otherwise.
Power law distributions:

\[X = \text{event size}. \]

Probability distribution function’s tail for large \(x \):

\[
\Pr(X = x) \propto x^{-\theta - 1}
\]
Power law distributions:

\(X = \text{event size}. \)

Probability distribution function’s tail for large \(x \):

\[
\Pr(X = x) \propto x^{-\theta - 1}
\]

Complementary cumulative distribution function:

\[
\Pr(X > x) = \int_x^\infty \Pr(X = x') dx' \propto x^{-\theta}
\]
Power law distributions:

\[X = \text{event size}. \]

Probability distribution function’s tail for large \(x \):

\[\Pr(X = x) \propto x^{-\theta-1} \]

Complementary cumulative distribution function:

\[\Pr(X > x) = \int_x^\infty \Pr(X = x') \, dx' \propto x^{-\theta} \]

Expect \(1 \leq \theta < 2 \) (finite mean, infinite variance)
Iceland data—monthly counts, 1888–1990:

Measles:

Complementary cdf: \(\Pr(X > x) \propto x^{-\theta} \)

\(\theta = 0.40 \) and 0.13, both outside of range \(1 \leq \theta < 2 \).

\(\Rightarrow \) Distribution seems ‘flat.’
Resurgence—example of SARS:

Epidemic slows... Then an infective moves to a new context.

Epidemic discovers new ‘pools’ of susceptibles: Resurgence.

➤ Importance of rare, stochastic events.
So...

Can existing simple models produce broad epidemic distributions + resurgence?
Size distributions:

No: Simple models typically produce bimodal or unimodal size distributions.

Including network models: random, small-world, scale-free, ...
Burning through the population:

Forest fire models: (Rhodes & Anderson, 1996).

The physicist’s approach:
“If it works for magnets, it’ll work for people…”

Bit of a stretch:
1. epidemics ≡ forest fires spreading on 3-d and 5-d lattices.
2. Claim Iceland and Faroe Islands exhibit power law distributions for outbreaks.
3. Original model not completely understood.
Sophisticated metapopulation models:

Community based mixing: Longini (two scales).

Eubank et al.’s EpiSims/TRANSIMS—city simulations.

Spreading through countries—Airlines: Germann et al.,

Vital work but perhaps hard to generalize from...

⇒ Create a simple model involving multiscale travel.
A toy agent-based model:

Locally: standard SIR model with random mixing

\(\beta \) = infection probability
\(\gamma \) = recovery probability
\(P \) = probability of travel
Movement distance: \(\Pr(d) \propto \exp(-d/\xi) \)
Model output: varying P_0 (left) and ξ (right):

$P_0 = \text{Expected number of infected individuals leaving initially infected context.}$

Need $P_0 > 1$ for disease to spread (independent of R_0).

Restricting frequency of travel and/or range limits epidemic size.
Flat distributions are possible for certain ξ and P_0.

➤ Different R_0's may produce similar distributions.
➤ Same epidemic sizes may arise from different R_0's.
Model output—resurgence:

Standard model

Standard model with transport:
Conclusions-I:

Results suggest that for novel diseases:

A. Epidemic size unpredictable.

B. The reproduction number R_0 is not overly useful.

R_0 summarises one epidemic after the fact and enfolds transport, everything.

R_0, however measured, is not informative about (A) how likely the observed epidemic size was or (B) how likely future epidemics will be.
Conclusions—II:

Disease spread highly sensitive to population structure.

Rare events may matter enormously (e.g., an infected individual taking an international flight).

More support for controlling population movement (e.g., travel advisories, quarantine).
“Multiscale, resurgent epidemics in a hierarchical metapopulation model.”
D.J. Watts, R. Muhamad, D. Medina, and P.S. Dodds