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Background

» How to assign meanings to a logic program P, e.g.
odd (s (0)),
odd (x) —> odd(ss(x)).

» Herbrand universe: Up = {s'0 | i > 0}

» Herbrand base: all ground atomic formulas formed
using terms from Up and predicates in P.

s ground(P): the set of ground instances of P.
odd (s0),
odd (0) —> odd(ssO0),
odd(s0) -> odd(sss0)),

s The meaning of logic programs reduces to the
interpretation of a set of “implications” of the form
X —a or X —-Y

Topology, Lattices, and Logic Programming — p.2/22



Motivation

» Fixed-point semantics has a lot to do with topology. It is
the topological property of the immediate consequence
operator T p that determines the property of the
semantics. (E.g. existence and uniqueness)
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Motivation

» Fixed-point semantics has a lot to do with topology. It is
the topological property of the immediate consequence
operator T p that determines the property of the
semantics. (E.g. existence and uniqueness)

s Topology has a lot to do with lattices. It is the lattice of
opens collectively that gives the topological space its
identity. (E.g. Ty, Hausdorff, sobriety)

s This leads to frames/locales, the abstract notion of
topology which takes open sets as the starting point.

s Paradigm: open sets as propositions, points as models.
Open sets first, points secondary.
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Overview

» Approach: generate an abstract topological space
(frame) from primitive data ground(P), then recover
“Interpretations” (models) as “points” derived from the
topology as completely prime filters.
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Overview

» Approach: generate an abstract topological space
(frame) from primitive data ground(P), then recover
“Interpretations” (models) as “points” derived from the
topology as completely prime filters.

s What do we gain with this “topological model-theory”?

s A unified and reusable framework for logic
programming semantics

s Models “for free”, proof rules “for free”, and
completeness theorems “for free"

s Make available tools from many areas
s Outline of this talk: coverage relations, definite

programs, logic programs with negation, disjunctive
logic programs, other issues.
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Definite logic programs

s QGiven (A, ), where - is a set of implications X F a, with
X a finite subset of A and ¢« a member of A.

s Interpretation: think of each element of A as an open
set, and each implication as containment ()| X C a.

» Question: which topological space?

s The “topological space" consists of all finite meets A
and arbitrary joins \/ generated from A, subject to the
interpretation of constraints + given above.

s How to generate a frame Frm(A) from (A,)?
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Frames and coverage relations

s A frame (locale) is a poset with finite meets and
arbitrary joins which satisfies the infinite distributive law

cAVY=V{zAy|yeY}

s A frame morphism is a function f : F — G that
preserves finite meets and arbitrary joins.

s Let (S, A, <) be a meet-semi-lattice. A coverageon S is
a relation > C 2° x S satisfying
s fY =athenY C |a.
s IfY =athenforanyb<a,{yAblyeY} =b.

» A coverage relation (or coverage) >~ Is compact if

Y = a implies X = a for some finite X C™ Y.
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Semilattice generated frames

A meet-semi-lattice S with a coverage > Is called a site.
A frame Frm(S) is generated from (S, ) if there exists i s.1.

s i:S5 — Frm(S) preserves finite meets,
s i transforms coversto joins: Y > a = i(a) = \i(Y), and

s Frm(S), Is universal, i.e., for any frame F' and any
meet-preserving and cover-to-join transforming function
f: S — F, there exists a unique frame morphism
g : Frm(S) — F s.t. the following diagram commutes:

st .p

! g

I‘-er(S)
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Ideals and filters

s An ideal of a poset is a lower closed, directed subset of
the poset.
In a lattice, an ideal is a \v-closed, lower set.

s A filter of a frame F'is a subset u C I which is A-closed,
upper set. Ideals always contain the bottom element
and filters always contain the top element.

A filter v of a frame F' is completely prime if
VPeu= Pnu#(forany P C u.
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~—=ideals

K

Given a site (S5, ), a —-ideal is a subset I of S which is
s lower-closed:a el &b<a=bel,

s covered: U = a& UCI=ac€l.

Example. Let D be a distributive lattice. Let the
coverage be defined as U > a if

s U C |aand

e AIXCMU, a=VvX

A —-ideal is then exactly an ideal of D in this case.

Definition. A frame (locale) is said to be spectral if it is
iIsomorphic to the ideal completion of a distributive
lattice.
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Coverage theorem

s Theorem (Johnstone82). The collection of ~-ideals
under inclusion is the frame generated from a site
(S, >).

s Definition. A point of a frame is a completely prime filter.

s Fact. If H is generated from (S, >) (with 7) then points
are exactly filters F of S such that

ila) e F&Y =a= (FbeY)i(b) € F
s Definition. frame H is spatial if for any a,b € H,
a <b iff VpointF, ace F =0b¢cF.

s Fact. Spectral frames are spatial.
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Compact coverages and spectral frames

» Recall: a coverage relation (or coverage) - is called
compact if for every X C S and every a € S,

X > a implies Y > a for some finite Y Cfin X

s Lemma. If (S, >) is a site for which the coverage relation
>~ 1S compact, then for any directed set I’ of ~-ideals,

VF=F.
s Lemma. Suppose (S, ) is a site and >~ is compact.

Then a ~-ideal is a compact element in the generated
frame if and only if it is generated by a finite subset of S.

s Compact Coverage Theorem (Z.03). A frame is specitral
Iff it can be generated from a compact coverage
relation.
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Information systems (without Con)

s Definition. An information system is a pair (A, ) such
that the relation FC Fin(A) x A is reflexive and transitive

o Definition. An ideal element of A is a subset x C A such
that X Cx & X Fa=ac¢€x.

s Theorem (Scott82) For any information system (A, F),
the set of ideal elements under inclusion (|A],C) Is a
complete algebraic lattice. Conversely, any complete
algebraic lattice is order-isomorphic to one from some
information system.
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Semantics of definite logic programs

s A definite logic program (A, F) gives rise to a site
(A" =), with A" the freely generated meet-semi-lattice
from A, and {a A (AX)} = AX iff X I a.
(Note X Caiff N X =an)X)

s Proposition. This compact coverage relation generates
a spectral frame Frm(A). The “points” of the frame are
in 1-1 correspondence with ideal elements of |A|.

s The Compact Coverage Theorem implies that < is
sound and complete with respect to these models. In
particular, X - a if for each point z, z = X = z | «a.

s Moreover, since + is “embedded in” <, we obtain the
“derived rules”, e.g. reflexivity and transitivity.
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What kind of topology?

s Scott topology.

s A setis Scoft openif it is upwards closed and
inaccessible by lubs of directed sets. Sets of the from
[X]:={z| X Cx & x € |A|} form a basis of the Scott
topology over (|4, ©).

s From =-ideals u to Scott opens: u — | J{[X] | AX € u}
s From Scott opens O to ~-ideals: O — {AX | [X] C O}

s Consistent with Fitting85, Fitting87, Seda-Hitzler95, 99,
Batarekh-Subrahmanian89, Rounds-Z.01, Z.-RoundsO1
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Coverage for negation

s P consists of implications of the form X, =Y — «a
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Coverage for negation

s P consists of implications of the form X, Y — a

» Coverage relation: for each rule X, -Y — a, for each z
st.xAy<Oforally eY, put
fanzANzANANX)|VyeY (zAy<0)} =z A (AX)

s By the Coverage Theorem, we have (in the frame)

V(e A (AX)=\V{aAhzAzANANX) |[VyeY (zAy <0)}

iff \/{z A (AX) |2 A (VY) <0} (Simplifying the right \/ \/ to /)
=\V{aNnzAAX)|zA(VY)<0)}

itf (AX)AV{x|xzA(VY) <0}
=a/AN(AX)ANV{z|zA(VY)<0)}

iff ( AX)AN{-b|beY} <a
Note that =b :=b — 0 := \/{x | z A b < 0}
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Strong negation

o Parameter: the underlying semi-lattice, corresponding
intuitively to a “basis” of the topology we want to
generate.

s (Fin(AU A),U, D) subjecttoana <0foralla e A

s Coverage relation: for each rule X, =Y — q, for each z
st.xAy<Oforally eY, put
fanzANzANANX)|VyeY (zAy<0)} =z A (AX)

s But now there is a unique largest element AY for which
AY Ay < 0foreach y € Y. So the coverage relation

reduces to {a A AY A (AX)} = AY A (AX) for each rule
X,Y —a.

s By the Coverage Theorem, we have (AX) A AY < a for
each X,—Y — a, in the generated frame.
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Weak negation (patch/Lawson topology)

s (Fin(AU A),U,D) subjecttoaVva=1andaAa=0 for all
a € A.

» Coverage relation: for each rule X, -Y — q, for each »
st.xAy<Oforally eY, put
fanzANzANANX)|VyeY (zAy<0)} =z A (AX)

s AY the largest element for which AY Ay < 0 for each
y € Y. So the coverage relation reduces to
{fa NNY AN (AX)} = AY AN (AX) for each rule X, =Y — a.

s By the Coverage Theorem, we have (AX) A AY < a for
each X,—Y — a, In the generated frame.
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Disjunctive logic programs

s Definition. A sequent structure (A, ) is a set of
implications X + Y, with X, Y finite subsets of A.

s Interpretation: think of each element of A as an open
set, and each implication as containment (\ X C | JY.

s Coverage: Y = AX7?
s Not quite. Here is the fix: {bA (AX) |be Y} = AX.

s >-ideals are subsets U C Fin(A) such that
s fXeUandY D X,thenY € U;

s f{agANANX),..., an AN(AX)} CUand X + ay,...,ay,
then AX € U.
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Generated frame (Coquand-Z.00)

s For U C Fin(A), write cU for the --ideal generated by U.

s Corollary. For any sequent structure (A, +), the set of its
—-ldeals Hj is a frame under inclusion. Moreover, the
interpretation mg : A — Hy mapping a to c{a} is
universal. Furthermore we have X - Y if and only if
Amo(X) < Vmo(Y) for all finite subsets X, Y of A.

o Definition. x C A is an ideal element if for each instance
XEYofk, X CximpliesznY # 0.

» ldeal elements corresponds to completely prime filters
In Hy. Therefore, if for each ideal element z, X C z
implieszNY # 0, then X - Y.

Topology, Lattices, and Logic Programming — p.19/22



Clausal logic (Rounds-Z.01)

s With respect to a sequent structure (A, ), a clauseis a
finite subset of A. A clause setis a collection of clauses.

s Anideal element x is a model of a clause v if x Nu # (.
r IS @ model of a clause set W it it is a model of every
clause in V.

s Define
s W Ewif any model of W is a model of u
s W3 wif either ) € W, or v can be deduced from W

by the HR rule “1:2 = WX i ay - X)

s {X1,...,X,} --»uif for any choice
a1 € X1,...,an € Xp, {a; | 1...n} Fu.

s Theorem. = = F; = --»>u

Topology, Lattices, and Logic Programming — p.20/22



Generating =-closed clause sets

s Given sequent structure (A, F), consider the freely
generated distributive lattice from A as the underlying
meet-semi-lattice.

» (Coverage relation:

s X = VX,
s X>=(aVIVX)A---AlapV (VX)) Ifay,...,an F X.

s Theorem (Coquand-Z.01). u is a =-ideal iff u is a
—-closed clause set.
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Concluding remarks

» A general topological approach to construct semantic
models.

s Completeness ensured by spatiality.
» Inference rules derived equationally.

s Treated definite logic programs, disjunctive logic
programs, and negation.

o Stable model semantics and other semantics?
s Metrics?
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