
Topology, Lattices, and Logic
Programming

Guo-Qiang Zhang

Department of EECS

Case Western Reserve University

DIMACS Lattice Workshop, July 8-10, 2003

Topology, Lattices, and Logic Programming – p.1/22

http://newton.cwru.edu/~gqz


Background

How to assign meanings to a logic program P , e.g.
odd(s(0)),
odd(x) -> odd(ss(x)).

Herbrand universe: UP = {si
0 | i ≥ 0}

Herbrand base: all ground atomic formulas formed
using terms from UP and predicates in P .

ground(P ): the set of ground instances of P .
odd(s0),
odd(0) -> odd(ss0),
odd(s0) -> odd(sss0)), ...

The meaning of logic programs reduces to the
interpretation of a set of “implications” of the form

X → a or X → Y
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Motivation

Fixed-point semantics has a lot to do with topology. It is
the topological property of the immediate consequence
operator TP that determines the property of the
semantics. (E.g. existence and uniqueness)

Topology has a lot to do with lattices. It is the lattice of
opens collectively that gives the topological space its
identity. (E.g. T0, Hausdorff, sobriety)

This leads to frames/locales, the abstract notion of
topology which takes open sets as the starting point.

Paradigm: open sets as propositions, points as models.
Open sets first, points secondary.
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Overview

Approach: generate an abstract topological space
(frame) from primitive data ground(P ), then recover
“interpretations” (models) as “points” derived from the
topology as completely prime filters.

What do we gain with this “topological model-theory”?
A unified and reusable framework for logic
programming semantics
Models “for free”, proof rules “for free”, and
completeness theorems “for free"
Make available tools from many areas

Outline of this talk: coverage relations, definite
programs, logic programs with negation, disjunctive
logic programs, other issues.
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Definite logic programs

Given (A,`), where ` is a set of implications X ` a, with
X a finite subset of A and a a member of A.

Interpretation: think of each element of A as an open
set, and each implication as containment

⋂
X ⊆ a.

Question: which topological space?

The “topological space" consists of all finite meets ∧
and arbitrary joins

∨
generated from A, subject to the

interpretation of constraints ` given above.

How to generate a frame Frm(A) from (A,`)?

Topology, Lattices, and Logic Programming – p.5/22



Frames and coverage relations

A frame (locale) is a poset with finite meets and
arbitrary joins which satisfies the infinite distributive law

x ∧
∨

Y =
∨
{x ∧ y | y ∈ Y }.

A frame morphism is a function f : F → G that
preserves finite meets and arbitrary joins.

Let (S,∧,≤) be a meet-semi-lattice. A coverage on S is
a relation �⊆ 2S × S satisfying

if Y � a then Y ⊆ ↓a.
if Y � a then for any b ≤ a, {y ∧ b | y ∈ Y } � b.

A coverage relation (or coverage) � is compact if

Y � a implies X � a for some finite X ⊆fin Y.
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Semilattice generated frames

A meet-semi-lattice S with a coverage � is called a site.
A frame Frm(S) is generated from (S,�) if there exists i s.t.

i : S → Frm(S) preserves finite meets,

i transforms covers to joins: Y � a ⇒ i(a) =
∨

i(Y ), and

Frm(S), i is universal, i.e., for any frame F and any
meet-preserving and cover-to-join transforming function
f : S → F , there exists a unique frame morphism
g : Frm(S) → F s.t. the following diagram commutes:

S

?
Frm(S)

-F
f

i

�
�

�
���

∃!g
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Ideals and filters

An ideal of a poset is a lower closed, directed subset of
the poset.
In a lattice, an ideal is a ∨-closed, lower set.

A filter of a frame F is a subset u ⊆ F which is ∧-closed,
upper set. Ideals always contain the bottom element
and filters always contain the top element.
A filter u of a frame F is completely prime if∨

P ∈ u ⇒ P ∩ u 6= ∅ for any P ⊆ u.
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�-ideals

Given a site (S,�), a �-ideal is a subset I of S which is
lower-closed: a ∈ I & b ≤ a ⇒ b ∈ I,
covered: U � a & U ⊆ I ⇒ a ∈ I.

Example. Let D be a distributive lattice. Let the
coverage be defined as U � a if

U ⊆ ↓a and
∃X ⊆fin U , a = ∨X

A �-ideal is then exactly an ideal of D in this case.

Definition. A frame (locale) is said to be spectral if it is
isomorphic to the ideal completion of a distributive
lattice.
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Coverage theorem

Theorem (Johnstone82). The collection of �-ideals
under inclusion is the frame generated from a site
(S,�).

Definition. A point of a frame is a completely prime filter.

Fact. If H is generated from (S,�) (with i) then points
are exactly filters F of S such that

i(a) ∈ F & Y � a ⇒ (∃b ∈ Y ) i(b) ∈ F

Definition. frame H is spatial if for any a, b ∈ H,

a ≤ b iff ∀point F, a ∈ F ⇒ b ∈ F.

Fact. Spectral frames are spatial.
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Compact coverages and spectral frames

Recall: a coverage relation (or coverage) � is called
compact if for every X ⊆ S and every a ∈ S,

X � a implies Y � a for some finite Y ⊆fin X.

Lemma. If (S,�) is a site for which the coverage relation
� is compact, then for any directed set F of �-ideals,∨

F =
⋃

F.

Lemma. Suppose (S,�) is a site and � is compact.
Then a �-ideal is a compact element in the generated
frame if and only if it is generated by a finite subset of S.

Compact Coverage Theorem (Z.03). A frame is spectral
iff it can be generated from a compact coverage
relation.
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Information systems (without Con)

Definition. An information system is a pair (A,`) such
that the relation `⊆ Fin(A) × A is reflexive and transitive

Definition. An ideal element of A is a subset x ⊆ A such
that X ⊆ x & X ` a ⇒ a ∈ x.

Theorem (Scott82) For any information system (A,`),
the set of ideal elements under inclusion (|A| ,⊆) is a
complete algebraic lattice. Conversely, any complete
algebraic lattice is order-isomorphic to one from some
information system.
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Semantics of definite logic programs

A definite logic program (A,`) gives rise to a site
(A∧,�), with A∧ the freely generated meet-semi-lattice
from A, and {a ∧ (∧X)} � ∧X iff X ` a.
(Note

⋂
X ⊆ a iff

⋂
X = a ∩

⋂
X)

Proposition. This compact coverage relation generates
a spectral frame Frm(A). The “points” of the frame are
in 1-1 correspondence with ideal elements of |A|.

The Compact Coverage Theorem implies that ≤ is
sound and complete with respect to these models. In
particular, X ` a if for each point x, x |= X ⇒ x |= a.

Moreover, since ` is “embedded in” ≤, we obtain the
“derived rules”, e.g. reflexivity and transitivity.
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What kind of topology?

Scott topology.

A set is Scott open if it is upwards closed and
inaccessible by lubs of directed sets. Sets of the from
[[X]] := {x | X ⊆ x & x ∈ |A|} form a basis of the Scott
topology over (|A| ,⊆).

From �-ideals u to Scott opens: u 7−→
⋃
{[[X]] | ∧X ∈ u}

From Scott opens O to �-ideals: O 7−→ {∧X | [[X]] ⊆ O}

Consistent with Fitting85, Fitting87, Seda-Hitzler95, 99,
Batarekh-Subrahmanian89, Rounds-Z.01, Z.-Rounds01
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Coverage for negation

P consists of implications of the form X,¬Y → a

Coverage relation: for each rule X,¬Y → a, for each x

s.t. x ∧ y ≤ 0 for all y ∈ Y , put
{a ∧ x ∧ z ∧ (∧X) | ∀y ∈ Y (z ∧ y ≤ 0)} � x ∧ (∧X)

By the Coverage Theorem, we have (in the frame)

∀x(.)x ∧ (∧X) =
∨
{a ∧ x ∧ z ∧ (∧X) | ∀y ∈ Y (z ∧ y ≤ 0)}

iff
∨
{x ∧ (∧X) | x ∧ (∨Y ) ≤ 0} (Simplifying the right

∨∨
to

∨
)

=
∨
{a ∧ z ∧ (∧X) | z ∧ (∨Y ) ≤ 0)}

iff (∧X) ∧
∨
{x | x ∧ (∨Y ) ≤ 0}

= a ∧ (∧X) ∧
∨
{z | z ∧ (∨Y ) ≤ 0)}

iff (∧X) ∧ ∧{¬b | b ∈ Y } ≤ a

Note that ¬b := b → 0 :=
∨
{x | x ∧ b ≤ 0}
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Strong negation

Parameter: the underlying semi-lattice, corresponding
intuitively to a “basis” of the topology we want to
generate.

(Fin(A ∪ Ā),∪,⊇) subject to a ∧ ā ≤ 0 for all a ∈ A.

Coverage relation: for each rule X,¬Y → a, for each x

s.t. x ∧ y ≤ 0 for all y ∈ Y , put
{a ∧ x ∧ z ∧ (∧X) | ∀y ∈ Y (z ∧ y ≤ 0)} � x ∧ (∧X)

But now there is a unique largest element ∧Ȳ for which
∧Ȳ ∧ y ≤ 0 for each y ∈ Y . So the coverage relation
reduces to {a ∧ ∧Ȳ ∧ (∧X)} � ∧Ȳ ∧ (∧X) for each rule
X,¬Y → a.

By the Coverage Theorem, we have (∧X) ∧ ∧Ȳ ≤ a for
each X,¬Y → a, in the generated frame.
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Weak negation (patch/Lawson topology)

(Fin(A ∪ Ā),∪,⊇) subject to a∨ ā = 1 and a∧ ā = 0 for all
a ∈ A.

Coverage relation: for each rule X,¬Y → a, for each x

s.t. x ∧ y ≤ 0 for all y ∈ Y , put
{a ∧ x ∧ z ∧ (∧X) | ∀y ∈ Y (z ∧ y ≤ 0)} � x ∧ (∧X)

∧Ȳ the largest element for which ∧Ȳ ∧ y ≤ 0 for each
y ∈ Y . So the coverage relation reduces to
{a ∧ ∧Ȳ ∧ (∧X)} � ∧Ȳ ∧ (∧X) for each rule X,¬Y → a.

By the Coverage Theorem, we have (∧X) ∧ ∧Ȳ ≤ a for
each X,¬Y → a, in the generated frame.
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Disjunctive logic programs

Definition. A sequent structure (A,`) is a set of
implications X ` Y , with X,Y finite subsets of A.

Interpretation: think of each element of A as an open
set, and each implication as containment

⋂
X ⊆

⋃
Y .

Coverage: Y � ∧X?

Not quite. Here is the fix: {b ∧ (∧X) | b ∈ Y } � ∧X.

�-ideals are subsets U ⊆ Fin(A) such that
if X ∈ U and Y ⊇ X, then Y ∈ U ;
if {a1 ∧ (∧X), . . . , an ∧ (∧X)} ⊆ U and X ` a1, . . . , an,
then ∧X ∈ U .
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Generated frame (Coquand-Z.00)

For U ⊆ Fin(A), write cU for the �-ideal generated by U .

Corollary. For any sequent structure (A,`), the set of its
�-ideals H0 is a frame under inclusion. Moreover, the
interpretation m0 : A → H0 mapping a to c{a} is
universal. Furthermore we have X ` Y if and only if
∧m0(X) ≤ ∨m0(Y ) for all finite subsets X,Y of A.

Definition. x ⊆ A is an ideal element if for each instance
X ` Y of `, X ⊆ x implies x ∩ Y 6= ∅.

Ideal elements corresponds to completely prime filters
in H0. Therefore, if for each ideal element x, X ⊆ x

implies x ∩ Y 6= ∅, then X ` Y .
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Clausal logic (Rounds-Z.01)

With respect to a sequent structure (A,`), a clause is a
finite subset of A. A clause set is a collection of clauses.

An ideal element x is a model of a clause u if x ∩ u 6= ∅.
x is a model of a clause set W if it is a model of every
clause in W .

Define
W |= u if any model of W is a model of u

W `∗

hr
u if either ∅ ∈ W , or u can be deduced from W

by the HR rule
a1, X . . . an, X

X
(if a1, . . . , an ` X)

{X1, . . . , Xn} 99K u if for any choice
a1 ∈ X1, . . . , an ∈ Xn, {ai | 1 . . . n} ` u.

Theorem. |= = `∗

hr
= 99K u
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Generating |=-closed clause sets

Given sequent structure (A,`), consider the freely
generated distributive lattice from A as the underlying
meet-semi-lattice.

Coverage relation:
X � ∨X,
X � (a1 ∨ (∨X)) ∧ · · · ∧ (an ∨ (∨X)) if a1, . . . , an ` X.

Theorem (Coquand-Z.01). u is a �-ideal iff u is a
|=-closed clause set.
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Concluding remarks

A general topological approach to construct semantic
models.

Completeness ensured by spatiality.

Inference rules derived equationally.

Treated definite logic programs, disjunctive logic
programs, and negation.

Stable model semantics and other semantics?

Metrics?
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