Topology, Lattices, and Logic Programming

Guo-Qiang Zhang

Department of EECS

Case Western Reserve University

DIMACS Lattice Workshop, July 8-10, 2003

Background

How to assign meanings to a logic program P, e.g.

```
odd(s(0)), odd(x) \rightarrow odd(ss(x)).
```

- Herbrand universe: $U_P = \{s^i 0 \mid i \geq 0\}$
- Herbrand base: all ground atomic formulas formed using terms from U_P and predicates in P.
- ground(P): the set of ground instances of P.

```
odd(s0),
odd(0) -> odd(ss0),
odd(s0) -> odd(sss0)), ...
```

The meaning of logic programs reduces to the interpretation of a set of "implications" of the form

$$X \to a$$
 or $X \to Y$

Fixed-point semantics has a lot to do with topology. It is the topological property of the immediate consequence operator T_P that determines the property of the semantics. (E.g. existence and uniqueness)

- Fixed-point semantics has a lot to do with topology. It is the topological property of the immediate consequence operator T_P that determines the property of the semantics. (E.g. existence and uniqueness)
- Topology has a lot to do with lattices. It is the lattice of opens collectively that gives the topological space its identity. (E.g. T_0 , Hausdorff, sobriety)

- Fixed-point semantics has a lot to do with topology. It is the topological property of the immediate consequence operator T_P that determines the property of the semantics. (E.g. existence and uniqueness)
- Topology has a lot to do with lattices. It is the lattice of opens collectively that gives the topological space its identity. (E.g. T_0 , Hausdorff, sobriety)
- This leads to frames/locales, the abstract notion of topology which takes open sets as the starting point.

- Fixed-point semantics has a lot to do with topology. It is the topological property of the immediate consequence operator T_P that determines the property of the semantics. (E.g. existence and uniqueness)
- Topology has a lot to do with lattices. It is the lattice of opens collectively that gives the topological space its identity. (E.g. T_0 , Hausdorff, sobriety)
- This leads to frames/locales, the abstract notion of topology which takes open sets as the starting point.
- Paradigm: open sets as propositions, points as models.
 Open sets first, points secondary.

Approach: generate an abstract topological space (frame) from primitive data ground(P), then recover "interpretations" (models) as "points" derived from the topology as completely prime filters.

- Approach: generate an abstract topological space (frame) from primitive data ground(P), then recover "interpretations" (models) as "points" derived from the topology as completely prime filters.
- What do we gain with this "topological model-theory"?

- Approach: generate an abstract topological space (frame) from primitive data ground(P), then recover "interpretations" (models) as "points" derived from the topology as completely prime filters.
- What do we gain with this "topological model-theory"?
 - A unified and reusable framework for logic programming semantics

- Approach: generate an abstract topological space (frame) from primitive data ground(P), then recover "interpretations" (models) as "points" derived from the topology as completely prime filters.
- What do we gain with this "topological model-theory"?
 - A unified and reusable framework for logic programming semantics
 - Models "for free", proof rules "for free", and completeness theorems "for free"

- Approach: generate an abstract topological space (frame) from primitive data ground(P), then recover "interpretations" (models) as "points" derived from the topology as completely prime filters.
- What do we gain with this "topological model-theory"?
 - A unified and reusable framework for logic programming semantics
 - Models "for free", proof rules "for free", and completeness theorems "for free"
 - Make available tools from many areas

- Approach: generate an abstract topological space (frame) from primitive data ground(P), then recover "interpretations" (models) as "points" derived from the topology as completely prime filters.
- What do we gain with this "topological model-theory"?
 - A unified and reusable framework for logic programming semantics
 - Models "for free", proof rules "for free", and completeness theorems "for free"
 - Make available tools from many areas
- Outline of this talk: coverage relations, definite programs, logic programs with negation, disjunctive logic programs, other issues.

Definite logic programs

- Given (A, \vdash) , where \vdash is a set of implications $X \vdash a$, with X a finite subset of A and a a member of A.
- Interpretation: think of each element of A as an open set, and each implication as containment $\bigcap X \subseteq a$.
- Question: which topological space?
- The "topological space" consists of all finite meets \land and arbitrary joins \lor generated from A, subject to the interpretation of constraints \vdash given above.
- How to generate a frame Frm(A) from (A, \vdash) ?

Frames and coverage relations

- A frame (locale) is a poset with finite meets and arbitrary joins which satisfies the infinite distributive law $x \land \bigvee Y = \bigvee \{x \land y \mid y \in Y\}.$
- A frame morphism is a function $f: F \rightarrow G$ that preserves finite meets and arbitrary joins.
- Let (S, \land, \leq) be a meet-semi-lattice. A *coverage* on S is a relation $\succ \subseteq 2^S \times S$ satisfying
 - if $Y \succ a$ then $Y \subseteq \downarrow a$.
 - if $Y \succ a$ then for any $b \le a$, $\{y \land b \mid y \in Y\} \succ b$.
- ▲ A coverage relation (or coverage) > is compact if

$$Y \succ a$$
 implies $X \succ a$ for some finite $X \subseteq^{\text{fin}} Y$.

Semilattice generated frames

A meet-semi-lattice S with a coverage \succ is called a *site*. A frame Frm(S) is *generated* from (S, \succ) if there exists i s.t.

- $i: S \to Frm(S)$ preserves finite meets,
- i transforms covers to joins: $Y \succ a \Rightarrow i(a) = \bigvee i(Y)$, and
- Frm(S), i is universal, i.e., for any frame F and any meet-preserving and cover-to-join transforming function $f: S \to F$, there exists a unique frame morphism $g: \text{Frm}(S) \to F$ s.t. the following diagram commutes:

Ideals and filters

- An ideal of a poset is a lower closed, directed subset of the poset.
 In a lattice, an ideal is a ∨-closed, lower set.
- A *filter* of a frame F is a subset $u \subseteq F$ which is \land -closed, upper set. Ideals always contain the bottom element and filters always contain the top element. A filter u of a frame F is *completely prime* if $\bigvee P \in u \Rightarrow P \cap u \neq \emptyset$ for any $P \subseteq u$.

>-ideals

- Given a site (S,\succ) , a \succ -ideal is a subset I of S which is
 - lower-closed: $a \in I \& b \leq a \Rightarrow b \in I$,
 - covered: $U \succ a \& U \subseteq I \Rightarrow a \in I$.
- Example. Let D be a distributive lattice. Let the coverage be defined as $U \succ a$ if
 - $U \subseteq \downarrow a$ and
 - \bullet $\exists X \subseteq^{\text{fin}} U, a = \forall X$
- A \succ -ideal is then exactly an *ideal* of D in this case.
- Definition. A frame (locale) is said to be spectral if it is isomorphic to the ideal completion of a distributive lattice.

Coverage theorem

- Theorem (Johnstone82). The collection of \succ -ideals under inclusion is the frame generated from a site (S, \succ) .
- Definition. A point of a frame is a completely prime filter.
- Fact. If H is generated from (S, \succ) (with i) then points are exactly *filters* F of S such that

$$i(a) \in F \& Y \succ a \Rightarrow (\exists b \in Y) i(b) \in F$$

• Definition. frame H is *spatial* if for any $a, b \in H$,

$$a \leq b$$
 iff $\forall point F, a \in F \Rightarrow b \in F$.

Fact. Spectral frames are spatial.

Compact coverages and spectral frames

- Recall: a coverage relation (or coverage) \succ is called *compact* if for every $X \subseteq S$ and every $a \in S$, $X \succ a$ implies $Y \succ a$ for some finite $Y \subseteq^{\text{fin}} X$.
- ▶ Lemma. If (S, \succ) is a site for which the coverage relation \succ is compact, then for any directed set F of \succ -ideals, $\bigvee F = \bigcup F$.
- Lemma. Suppose (S, \succ) is a site and \succ is compact. Then a \succ -ideal is a compact element in the generated frame if and only if it is generated by a finite subset of S.
- Compact Coverage Theorem (Z.03). A frame is spectral iff it can be generated from a compact coverage relation.

Information systems (without Con)

- **●** Definition. An information system is a pair (A, \vdash) such that the relation $\vdash \subseteq Fin(A) \times A$ is reflexive and transitive
- Definition. An ideal element of A is a subset $x \subseteq A$ such that $X \subseteq x \& X \vdash a \Rightarrow a \in x$.
- Theorem (Scott82) For any information system (A, \vdash) , the set of ideal elements under inclusion $(|A|, \subseteq)$ is a complete algebraic lattice. Conversely, any complete algebraic lattice is order-isomorphic to one from some information system.

Semantics of definite logic programs

- A definite logic program (A, \vdash) gives rise to a site (A^{\land}, \succ) , with A^{\land} the freely generated meet-semi-lattice from A, and $\{a \land (\land X)\} \succ \land X$ iff $X \vdash a$. (Note $\bigcap X \subseteq a$ iff $\bigcap X = a \cap \bigcap X$)
- Proposition. This compact coverage relation generates a spectral frame Frm(A). The "points" of the frame are in 1-1 correspondence with ideal elements of |A|.
- The Compact Coverage Theorem implies that \leq is sound and complete with respect to these models. In particular, $X \vdash a$ if for each point $x, x \models X \Rightarrow x \models a$.
- Moreover, since \vdash is "embedded in" \leq , we obtain the "derived rules", e.g. reflexivity and transitivity.

What kind of topology?

- Scott topology.
- A set is *Scott open* if it is upwards closed and inaccessible by lubs of directed sets. Sets of the from $[\![X]\!] := \{x \mid X \subseteq x \ \& \ x \in |A|\}$ form a *basis* of the Scott topology over $(|A|, \subseteq)$.
- From \succ -ideals u to Scott opens: $u \longmapsto \bigcup \{ [\![X]\!] \mid \land X \in u \}$
- From Scott opens O to \succ -ideals: $O \longmapsto \{ \land X \mid [\![X]\!] \subseteq O \}$
- Consistent with Fitting85, Fitting87, Seda-Hitzler95, 99, Batarekh-Subrahmanian89, Rounds-Z.01, Z.-Rounds01

Coverage for negation

• P consists of implications of the form $X, \neg Y \rightarrow a$

Coverage for negation

- P consists of implications of the form $X, \neg Y \rightarrow a$
- Coverage relation: for each rule $X, \neg Y \to a$, for each x s.t. $x \wedge y \leq 0$ for all $y \in Y$, put $\{a \wedge x \wedge z \wedge (\wedge X) \mid \forall y \in Y \ (z \wedge y \leq 0)\} \succ x \wedge (\wedge X)$

Coverage for negation

- P consists of implications of the form $X, \neg Y \rightarrow a$
- Coverage relation: for each rule $X, \neg Y \to a$, for each x s.t. $x \wedge y \leq 0$ for all $y \in Y$, put $\{a \wedge x \wedge z \wedge (\wedge X) \mid \forall y \in Y \ (z \wedge y \leq 0)\} \succ x \wedge (\wedge X)$
- By the Coverage Theorem, we have (in the frame)

$$\forall x(.)x \wedge (\wedge X) = \bigvee \{a \wedge x \wedge z \wedge (\wedge X) \mid \forall y \in Y \ (z \wedge y \leq 0)\}$$
 iff
$$\bigvee \{x \wedge (\wedge X) \mid x \wedge (\vee Y) \leq 0\}$$
 (Simplifying the right
$$\bigvee \{x \wedge (\wedge X) \mid x \wedge (\vee Y) \leq 0\}$$
 iff
$$(\wedge X) \wedge \bigvee \{x \mid x \wedge (\vee Y) \leq 0\}$$

$$= a \wedge (\wedge X) \wedge \bigvee \{z \mid z \wedge (\vee Y) \leq 0\} \}$$
 iff
$$(\wedge X) \wedge \wedge \{\neg b \mid b \in Y\} \leq a$$
 Note that
$$\neg b := b \rightarrow 0 := \bigvee \{x \mid x \wedge b \leq 0\}$$

Strong negation

- Parameter: the underlying semi-lattice, corresponding intuitively to a "basis" of the topology we want to generate.
- $(\operatorname{Fin}(A \cup \overline{A}), \cup, \supseteq)$ subject to $a \wedge \overline{a} \leq 0$ for all $a \in A$.
- Coverage relation: for each rule $X, \neg Y \to a$, for each x s.t. $x \wedge y \leq 0$ for all $y \in Y$, put $\{a \wedge x \wedge z \wedge (\wedge X) \mid \forall y \in Y \ (z \wedge y \leq 0)\} \succ x \wedge (\wedge X)$
- But now there is a unique largest element $\land \bar{Y}$ for which $\land \bar{Y} \land y \leq 0$ for each $y \in Y$. So the coverage relation reduces to $\{a \land \land \bar{Y} \land (\land X)\} \succ \land \bar{Y} \land (\land X)$ for each rule $X, \neg Y \rightarrow a$.
- By the Coverage Theorem, we have $(\land X) \land \land \overline{Y} \leq a$ for each $X, \neg Y \rightarrow a$, in the generated frame.

Weak negation (patch/Lawson topology)

- (Fin $(A \cup \bar{A}), \cup, \supseteq$) subject to $a \vee \bar{a} = 1$ and $a \wedge \bar{a} = 0$ for all $a \in A$.
- Coverage relation: for each rule $X, \neg Y \to a$, for each x s.t. $x \wedge y \leq 0$ for all $y \in Y$, put $\{a \wedge x \wedge z \wedge (\wedge X) \mid \forall y \in Y \ (z \wedge y \leq 0)\} \succ x \wedge (\wedge X)$
- $\wedge \bar{Y}$ the largest element for which $\wedge \bar{Y} \wedge y \leq 0$ for each $y \in Y$. So the coverage relation reduces to $\{a \wedge \wedge \bar{Y} \wedge (\wedge X)\} \succ \wedge \bar{Y} \wedge (\wedge X)$ for each rule $X, \neg Y \rightarrow a$.
- By the Coverage Theorem, we have $(\land X) \land \land \overline{Y} \leq a$ for each $X, \neg Y \rightarrow a$, in the generated frame.

Disjunctive logic programs

- **●** Definition. A sequent structure (A, \vdash) is a set of implications $X \vdash Y$, with X, Y finite subsets of A.
- Interpretation: think of each element of A as an open set, and each implication as containment $\bigcap X \subseteq \bigcup Y$.
- Coverage: $Y \succ \land X$?
- Not quite. Here is the fix: $\{b \land (\land X) \mid b \in Y\} \succ \land X$.
- \succ -ideals are subsets $U \subseteq Fin(A)$ such that
 - if $X \in U$ and $Y \supseteq X$, then $Y \in U$;
 - if $\{a_1 \wedge (\wedge X), \ldots, a_n \wedge (\wedge X)\} \subseteq U$ and $X \vdash a_1, \ldots, a_n$, then $\wedge X \in U$.

Generated frame (Coquand-Z.00)

- For $U \subseteq Fin(A)$, write cU for the \succ -ideal generated by U.
- Corollary. For any sequent structure (A, \vdash) , the set of its \succ -ideals H_0 is a frame under inclusion. Moreover, the interpretation $m_0: A \to H_0$ mapping a to $c\{a\}$ is universal. Furthermore we have $X \vdash Y$ if and only if $\land m_0(X) \leq \lor m_0(Y)$ for all finite subsets X, Y of A.
- **●** Definition. $x \subseteq A$ is an *ideal element* if for each instance $X \vdash Y$ of \vdash , $X \subseteq x$ implies $x \cap Y \neq \emptyset$.
- Ideal elements corresponds to completely prime filters in H_0 . Therefore, if for each ideal element $x, X \subseteq x$ implies $x \cap Y \neq \emptyset$, then $X \vdash Y$.

Clausal logic (Rounds-Z.01)

- With respect to a sequent structure (A, \vdash) , a *clause* is a finite subset of A. A *clause set* is a collection of clauses.
- An ideal element x is a model of a clause u if $x \cap u \neq \emptyset$. x is a model of a clause set W if it is a model of every clause in W.

Define

- $W \models u$ if any model of W is a model of u
- $W \vdash_{hr}^* u$ if either $\emptyset \in W$, or u can be deduced from W by the HR rule $\frac{a_1, X \ldots a_n, X}{X}$ (if $a_1, \ldots, a_n \vdash X$)
- $\{X_1, \ldots, X_n\} \longrightarrow u$ if for any choice $a_1 \in X_1, \ldots, a_n \in X_n$, $\{a_i \mid 1 \ldots n\} \vdash u$.
- Theorem. $\models = \vdash_{hr}^* = \longrightarrow u$

Generating |=-closed clause sets

- Given sequent structure (A, \vdash) , consider the freely generated distributive lattice from A as the underlying meet-semi-lattice.
- Coverage relation:
 - $X \succ \vee X$,
 - \blacktriangle $X \succ (a_1 \lor (\lor X)) \land \cdots \land (a_n \lor (\lor X)) \text{ if } a_1, \ldots, a_n \vdash X.$
- Theorem (Coquand-Z.01). u is a \succ -ideal iff u is a \models -closed clause set.

Concluding remarks

- A general topological approach to construct semantic models.
- Completeness ensured by spatiality.
- Inference rules derived equationally.
- Treated definite logic programs, disjunctive logic programs, and negation.
- Stable model semantics and other semantics?
- Metrics?