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Motivation: Autonomous Drivin

¥ Network of autonomous automobiles + one human-driven car
¥ Sensing for OanomalousO driving from human
¥ Want to jointly sense over communications links

Matthew Nokleby, Wayne State University ! . . . . ODistributed Approaches to Mirror DescentE



Motivation: Autonomous Drivin

¥ Network of autonomous automobiles + one human-driven car
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Challenges:
¥ Need to detect/act quickly

¥ Wireless links have limited rate N canOt
exchange raw data

Matthew Nokleby, Wayne State University ! . . . . ODistributed Approaches to Mirror DescentE



Motivation: Autonomous Drivin

¥ Network of autonomous automobiles + one human-driven car
¥ Sensing for OanomalousO driving from human
¥ Want to jointly sense over communications links

Challenges:
¥ Need to detect/act quickly

¥ Wireless links have limited rate N canOt
exchange raw data

Questions:

¥ How well can devices jointly learn when
links are slow(/not fast)?

¥ What are good strategies?
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Contributions of This Talk

¥ Frame the problem as distributed stochastic optimization

¥ Network of devices trying to minimize an objective function from streams of
noisy data
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Contributions of This Talk

¥ Frame the problem as distributed stochastic optimization

¥ Network of devices trying to minimize an objective function from streams of
noisy data

¥ Focus on communications aspect. how to collaborate when links have
limited rates?

¥ DebPning two time scales: one rate for data arrival, and one for message
exchanges
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Contributions of This Talk

¥ Frame the problem as distributed stochastic optimization

¥ Network of devices trying to minimize an objective function from streams of
noisy data

¥ Focus on communications aspect. how to collaborate when links have
limited rates?

¥ DebPning two time scales: one rate for data arrival, and one for message
exchanges

¥ Solution: distributed versions of stochastic mirror descent that carefully
balance gradient averaging and mini-batching

¥ Derive network/rate conditions for near-optimum convergence
e Accelerated methods provide a substantial speedup
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Distributed Stochastic Learnin

¥ Network of m nodes, each with an 1.I.d. data stream

{&(t)}, for sensor i at time t
¥ Nodes communicate over wireless links, modeled by graph

- (51(1)51(2),..)
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\n/ (83(1),83(2),...)
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(Es(1)86(2),..) [l

(85(1),85(2),...)
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Stochastic Optimization Mode

¥ Nodes want to solve the stochastic optimization problem:

minxex P(x) = minxex Eg[p(x,6)]

¥ ¢ is convex, XcR? is compact and convex
¥ 1 has Lipschitz gradients: [composite optimization later!]

VU (x) - VP (y)|| < Ll|x-yl], xy €X

m  (G(1),81(2),..)

(86(1),86(2),...) (82(1),82(2),..)

(£5(1),E5(2),...) d d (£3(1),E(2),..)
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Stochastic Optimization Mode

¥ Nodes want to solve the stochastic optimization problem:

minxex P(x) = minxex Eg[p(x,6)]

¥ ¢ is convex, XcR? is compact and convex

¥ 1 has Lipschitz gradients: [composite optimization later!]

VU (x) - VP (y)|| < Ll|x-yl], xy €X

¥ Nodes have access to noisy gradients:

gi(t) == VPp(xi(1),8i(1))
Eg[gi(t)] — V\lJ(Xl(t)) (E6(1).86(2),..)
Ee[lgi(D) - Vi (xi(D]]*] < 0

(€5(1),E5(2),...) d

¥ Nodes keep search points xi(t)

m  (G(1),81(2),..)

Y ﬂ
(€4(1),84(2),...)

(§2(1),82(2),...)

(&(1),&(2),...)
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Stochastic Mirror Descent

¥ (Centralized) SO is well understood
¥ Optimum convergence via mirror descent

Algorithm: Stochastic Mirror Descent
Initialize xi(0) « 0
fort=1to T:
Xi(t) < Px[xi(t-1) - ye gi(t-1)]
X¥i(t) « 1/t 2 xi(T)
end for t

[Xiao, ODual averaging methods for regularized stochastic learning and online optimization O, 2010]
[Lan, OAn Optimal Method for Stochastic Composite OptimizationO, 2012]
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Stochastic Mirror Descent

¥ (Centralized) SO is well understood
¥ Optimum convergence via mirror descent

Algorithm: Stochastic Mirror Descent
Initialize xi(0) « 0
fort=1to T:
Xi(t) < Px[xi(t-1) - ye gi(t-1)]
X¥i(t) « 1/t 2 xi(T)
end for t

¥ Extensions via Bregman divergences + prox mappings
¥ After T rounds:

Bl (<3 (1)) — (x)] < O() |+ 7

[Xiao, ODual averaging methods for regularized stochastic learning and online optimization O, 2010]
[Lan, OAn Optimal Method for Stochastic Composite OptimizationO, 2012]
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Stochastic Mirror Descent

¥ Can speed up convergence via accelerated stochastic mirror descent:
¥ Similar SGD steps, but more complex iterate averaging
¥ After T rounds:

E (M) LX) OW) 5+ #=

[Xiao, ODual averaging methods for regularized stochastic learning and online optimization O, 2010]
[Lan, OAn Optimal Method for Stochastic Composite OptimizationO, 2012]
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Stochastic Mirror Descent

¥ Can speed up convergence via accelerated stochastic mirror descent:
¥ Similar SGD steps, but more complex iterate averaging
¥ After T rounds:

E (M) LX) OW) 5+ #=

¥ Optimum convergence order-wise

¥ Noise term dominates in general, but ASMD provides a universal solution to
the SO problem

¥ Will prove signibcant in distributed stochastic learning

[Xiao, ODual averaging methods for regularized stochastic learning and online optimization O, 2010]
[Lan, OAn Optimal Method for Stochastic Composite OptimizationO, 2012]
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Back to Distributed Stochastic Le

¥ With m nodes, after T rounds, the best possible performance Is

ENN (X (T) ! ! (xX)]" O(1) (mLT)2 + Hﬁ
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Back to Distributed Stochastic Le

¥ With m nodes, after T rounds, the best possible performance Is

L 11

E[ (xi(T)! T (x)]" Ol T
¥ Achievable with sufbciently fast communications

¥ In distributed computing environment, noise term is achievable via
gradient averaging:

1. Use AllReduce to average gradients over a spanning tree
2. Take a SMD step
¥ Upshot: Averaging reduces gradient noise, provides speedup
Perfect averages difpcult to compute over wireless networks
¥ Approaches: average consensus, incremental methods, etc.

K

[Dekel et al., OOptimal distributed online prediction using mini-batchesO, 2012]
[Duchi et al., ODual averaging for distributed optimization EO, 2012]
[Ram et al., Olncremental stochastic sub-gradient algorithms for convex optimization O, 2009]
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Communications Model

¥ Nodes connected over an undirected graph G = (VE)

¥ Every communications round, each node broadcasts a single gradient-like
message mi(r) to its neighbors

¥ Rate limitations modeled by the communications ratio p
¥ p communications rounds for every data sample that arrives

\“““/ i
ma(r) ,/m?,(r
i i

l m4(r)
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Communications Model

¥ Nodes connected over an undirected graph G = (VE)

¥ Every communications round, each node broadcasts a single gradient-like
message mi(r) to its neighbors

¥ Rate limitations modeled by the communications ratio p
¥ p communications rounds for every data sample that arrives

data rounds

m;i(r=1) m;(r=2) comms rounds

p=1/2

data rounds

mi(r=1) | mi(r=2) | mi(r=3) | mi(r=4) comms rounds
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Distributed Mirror Descent Outl

¥ Distribute stochastic MD via averaging consensus:
1. Nodes obtain local gradients
2.Compute distributed gradient averages via consensus
3. Take MD step using the average gradients

data rounds

search point updates
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Distributed Mirror Descent Outl

¥ Distribute stochastic MD via averaging consensus:
1. Nodes obtain local gradients
2.Compute distributed gradient averages via consensus
3. Take MD step using the average gradients

data rounds

search point updates

p=2

¥ If links are slow (p small), there isnOt much time for consensus
¥ New data samples arrives before the network can process the previous one
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Mini-batching Gradients

¥ Solution: mini-batch together b gradients, batch size b>1
¥ Hold search point constant for b rounds

¥ Average together b gradient evaluations:
sb

0i(s) = Z 9:(t)

t=(s—1)b+1
¥ Reduces gradient noise: Eg[|]|" i(s) - Vi (xi(s)|]|?] < 6%/b
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mi(r=1)

Mini-batching Gradients

¥ Solution: mini-batch together b gradients, batch size b>1
¥ Hold search point constant for b rounds
¥ Average together b gradient evaluations:

sb

2

gi(t)

t=(s—1)b+1

¥ Reduces gradient noise: Eg[|]|" i(s) - Vi (xi(s)|]|?] < 6%/b
¥ Allows for more consensus rounds

mi(r=2) mi(r=3)

data rounds

m;(r=4) consensus rounds

0=1/2,b=4

"i(s=2)

mini-batch rounds

search points
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mi(r=1)

Mini-batching Gradients

¥ Solution: mini-batch together b gradients, batch size b>1
¥ Hold search point constant for b rounds
¥ Average together b gradient evaluations:

sb

2

gi(t)

t=(s—1)b+1

¥ Reduces gradient noise: Eg[|]|" i(s) - Vi (xi(s)|]|?] < 6%/b
¥ Allows for more consensus rounds

mi(r=2) mi(r=3)

data rounds

m;(r=4) consensus rounds

0=1/2,b=4

e However, fewer search point updates

"i(s=2)

mini-batch rounds

search points
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Gradient Averaging via Consen

¥ Averaging consensus: nodes compute local averages with neighbors,
which converge on the global average

¥ Choose a doubly-stochastic matrix W € R™™ such that wi; # 0 only if nodes
are connected, i.e. (i,j) €E

¥ At mini-batch round s and communications round r:
r _ ri 1
(s = wy !l 7(s)
1]

¥ For mini-batch size b and communications ratio p, nodes can carry out b'!
consensus rounds per mini-batch.

¥ Iterates converge on true average as # of rounds -> inbnity

[Duchi et al., ODual averaging for distributed optimization EO, 2012]
[Tsianos and Rabbat, OEfbcient distributed online prediction and stochastic optimization O, 2016]
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Gradient Averaging via Consen

¥ At mini-batch round s and communications round r:

()= wi! (s)

Lemma The equivalent gradient noise variance is bounded by
11 ' b 11
2 =ENIM (91 #(xi(s) 7] #

21 b
O(1) $5 "(W)IIXi(s)! x;(9)I? - (\l:)/\/)!2 %
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Gradient Averaging via Consen

¥ At mini-batch round s and communications round r:

()= wi! (s)
)

Lemma: The equivalent gradient noise variance is bounded by
" — 1 l b 11
L FENM(S) 1 #(xi(s)II] #

21 b 2 2
$5 (W)!2 )

O(1) 85 "(W)IIxi(s) ! x;()II> + 2= mb

¥ Noise components: gap in nodesO search points, error due to imperfect
consensus averaging, residual noise

¥ For p or b large, noise converges on perfect-average case
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Distributed SA Mirror Descen!

Algorithm: Distributed Stochastic Approximation Mirror Descent

(D-SAMD)
Initialize xi(0) < O, for all i

for s=1 to T/b: [iterate over mini-batches]
901(8) — 91(8)

xi(sb+1) < Px[xi(sb) - ys 6°Pi(s)]
x¥i(t) « 1/s X xi(Tb)
end for s

¥ Outer loop: nodes compute mini-batches, take MD steps
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D-SAMD Convergence Analy

¥ Recall that Mirror Descent has convergence rate:

Elp(xi™(T)) —¢(x7)] < O(1)
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D-SAMD Convergence Analy

¥ Recall that Mirror Descent has convergence rate:
L

E[(x"(T)) = (x")] < O(1) | = - jT

¥ With mini-batch size b and equivalent gradient noise " %eq, D-SAMD has

B G I) 1000 0 | 5w 5
] --2'b 2 2
12,2 0(1) "2 W)l (9)! X (P + 2w
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D-SAMD Convergence Analy

¥ Recall that Mirror Descent has convergence rate:

E[(x"(T)) = (x")] < O(1) | = - jT

¥ With mini-batch size b and equivalent gradient noise " %eq, D-SAMD has

B G I) 1000 0 | 5w 5
] --2'b 2 2
12,2 0(1) "2 W)l (9)! X (P + 2w

¥ Need to choose b big enough to ensure:
1. NodesO iterates donOt diverge
2. Equivalent noise variance is on par with residual noise variance
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D-SAMD Convergence Analy

Lemma D-SAMD iterates are guaranteed to converge provided

log(mT )
b! O(1) 1+
W Tlog ™ (w)
Furthermore this condition iIs sufbcrent to ensure that
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D-SAMD Convergence Analy

Lemma: D-SAMD Iterates are guaranteed to converge provided
| log(mT)
b! O(1) 1+ -
log(V " 2(W))
Furthermore, this condition Is squDcie_nt to ensure that

¥ Results in convergence rate

. L :
0T OO 0 ot 2

¥ When is this order optimum?
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D-SAMD Convergence Analy

m'' 2 log(mT)
: " TY2log(V #2(W))
EThen the conditions of the previous lemma ensure that

| 0(1).

||2

EL OG(T) ! L] 0)  —
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D-SAMD Convergence Analy

Theorem: If
m' 2 log(mT)

"TY2]og(l/ #2,(W))
Then the conditions of the previous lemma ensure that

| 0(1).

||2

EL OG(T) ! L] 0)  —

¥ Larger mini-batches decreases gradient noise, but also decreases the
number of MD steps taken

¥ Eventually, the deterministic term dominates the convergence rate

¥ Natural idea: use accelerated mirror descent
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Accelerated Distributed SA Mirror

¥ Recall: accelerated MD takes similar projected gradient descent steps, uses
more complicated averaging scheme

Algorithm: Accelerated Distributed Stochastic Approximation
Mirror Descent (AD-SAMD) [simplified]
for s=1 to T/b: [iterate over mini-batches]
compute mini-batch gradients
for r=1 to pb:
perform consensus iterations on gradients
end for r
perform accelerated MD updates
end for s
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AD-SAMD Convergence Anal

¥ With mini-batch size b and equivalent gradient noise " %¢q,

AD-SAMD has b2 \/ 52 b

Bl (xi(T)) — 0(x")] < O(1) | T + 1/ ==

¥ The equivalent gradient noise has approx. the same variance:

2\20b 52 52
Teq = O() | N7]xi(8) = x(s)[]° + —— + —
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AD-SAMD Convergence Anal

¥ With mini-batch size b and equivalent gradient noise " %¢q,

AD-SAMD has ng \/02 b

Bl (xi(T)) — 0(x")] < O(1) | T + 1/ ==

¥ The equivalent gradient noise has approx. the same variance:

Lemma AD-SAMD iterates are guaranteed to converge, and 06%¢q
5 ‘has optimum scaling, provided

b1 0(1) 1+ —°9mT)

log(1/ ™ 2(W))
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AD-SAMD Convergence Anal

¥ Results in a convergence rate

Ely(xi(T)) —v(x")] < O(1) A\ o7
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AD-SAMD Convergence Anal

¥ Results in a convergence rate

_ Llog®(mT) o2

Bl (D) =6 < O | oz gy VT

Theorem: If ) i -
»> 0(1) m /" log(mT)
0T34 1og(1/A2(W)) .

Then the conditions of the previous lemma ensure that

||2

EL G(T)! O™ o) —
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AD-SAMD Convergence Anal

¥ Results in a convergence rate

_ Llog®(mT) o2

Bl (D) =6 < O | oz gy VT

Theorem: If

T 1/41 T
»> 0(1) m /" log(mT)
LoT3/* log(1/ A2 (W)
Then the conditions of the previous lemma ensure that
E[l (xi(T)! T (x)]" O(1) —
[ (TN 0@

¥ AD-SAMD permits more aggressive mini-batching
¥ Improvement of 1/4 in the exponents of mand T
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Numerical example: Logistic Reg

¥ Logistic regression: learn a binary classibPer from streams of input data
¥ Measurements are Gaussian-distributed, unknown mean, d=50

¥ Network drawn from Erdos-Reyni model with  m=20

¥ Log-loss cost function

L L T T T T T T T T T
080y Q — 0~ D-SAMD
°W\-,2°°°°°-ooe°°” Lq — Q= ADSAMD
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Composite Optimization

¥ What If objective is not smooth?
¥ Composite convex optimization:

(x) = 1(x)+ h(x)
¥ f(x) has Lipschitz gradients, but h(x) is only Lipschitz:
It T x) " Tyl # LiIx™ yl
Ih(x) ™ h(Y)|| # M]| x™ Y]]

¥ Accelerated MD via subgradients gives the optimum convergence

N (i (T) ! ! (x)] " O1) %+ Mot

+
T
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Composite Optimization

¥ Small perturbations lead to signibcant deviations in subgradients

¥ Two new challenges:
1. Mini-batching doesnOt help N gradient noise variance doesnOt matter!
2. Imperfect average consensus results in a Onoise RoorO

¥ Results in sub-optimum convergence rates:

EQ (i (T 1 (X)]" O(1) — + L& 1 MO,y
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Conclusions

Summary:

¥ Investigated stochastic learning from the perspective of rate-

Imited, wireless links

¥ Developed two schemes, D-SAMD and AD-SAMD, that balance In-
network gradient averaging and local mini-batching

¥ Derived conditions for order-optimum convergence

Future work:

¥ Optimum distributed SO for composite objectives

¥ Can we improve the convergence rates of AD-SAMD?
¥ Other communications issues: delay, quantization, etc.

Preprint available: https://arxiv.org/abs/1704.07888
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