Contents

• Brief Background of the NJ Offshore Wind Industry
• Developer’s perspective on maritime risks
• Public / Private Co-operation
• Questions?
Background of NJ Offshore Wind Industry

• 2004 – 2006
 – Blue Ribbon Panel created to identify and weigh costs and benefits of developing offshore wind considering both economic and environmental costs and benefits
 – Panel recommended offshore wind test project not to exceed 350MW

• 2007 – 2008
 – NJBPU issues solicitation for test project
 – Five companies responded
 – GSOE selected as the solicitation winner
 – Energy Master Plan issued with goal to develop 1000MW of offshore wind by 2012 (3,000MW by 2020)

• 2010 – present
 – Offshore Wind Economic Development Act (“OWEDA”) signed into law to spur economic development and job creation from the emerging offshore wind industry in New Jersey
 – Targets 1,100MW of offshore wind (floor); state would like to see 3,000MW
 – Last stages of regulatory rule process prior to solicitation for competitive bids (expected summer 2012)
Developer’s perspective on maritime risk

• Five areas identified
 – Structure (e.g. – size of projects in Wind Energy Area)
 – Technical (e.g. – grid reliability, reserve capacity, reliability etc.)
 – Operating (e.g. – personnel safety, turbine availability, etc.)
 – Natural Disasters (e.g. – hurricanes, icing, etc.)
 – Terrorism
Structure

- Large Scale projects
 - GSOE project site roughly 120 square miles in size; or the size of Essex County, NJ
 - 60-150 turbines
 - $\frac{3}{4}$ of mile spacing between each turbine
 - Offshore substations = $\sim5,000$ sq. ft.

- Large scale shared area requires coordination with shipping and fishing industry

- Increased maritime traffic, modified ship routes, size of ships, recreational and commercial fishing activities, anchor areas, etc. all contribute to risk profile
• Although most turbines have good track record, turbine availability and reliability impact:
 – Electric grid reliability and short/long term transmission planning
 – Reserve capacity requirements
 • intermittency of wind resource requires standby reserves in the event of a drop off (think Texas!)
 – Submarine cables are exposed to natural and accidental failure risk
Operating

• Ocean environment has a great deal of influence on turbine availability and reliability
 – Corrosion, humidity
 – Sea state (waves, current, tide, etc.)
 – Ability of personnel to safely access turbines for O&M, etc.)

• Negligible spill /environmental risk
Natural Disasters

- Natural disasters pose structural and operational risks to offshore wind farms despite technological features designed to mitigate risk impacts
 - Hurricanes (high wind, waves)
 - Nor'easters (high wind, waves)
 - Earthquakes/tsunamis (structural)
 - Significant storm winds, wave heights

- Offshore wind industry cooperative initiatives
 - Meteorological forecasting modeling
 - Oceanographic modeling
 - Marine Mammal / Avian studies
Terrorism

• Project locations 10-25 miles offshore pose security risks
 – Typically unmanned
 – Over 1 hour to reach project sites from shore
 – Passive security measures most likely (security cameras, sensors)
 – You can’t fence off 120+ square miles of ocean
 – Concurrent uses of the area poses challenges to site security/integrity (recreational/commercial fishing, scientific research, shipping lanes, etc.)
• U.S. Coast Guard will be primary risk mitigant:
 – Do they have the necessary resources (ships/aircraft, personnel, training, etc.) to undertake monitoring/response capabilities?
 – Are there other or new technologies (like sub-sea detectors) that can assist a project owner and government agencies like the USCG in fulfilling security requirements
• Other risk mitigants?
For further information

Rob Gibbs

Vice President, Garden State Offshore Energy
RGibbs@gardenstatewind.com

Manager Development – Renewable Energy
PSEG Global, LLC
973-430-7985
Robert.Gibbs@pseg.com