Supporting Secure and Resilient Inland Waterways

Letitia Pohl, Matt Campo, and Jennifer Rovito

2nd Annual Maritime Risk Symposium
November 9, 2011

Acknowledgement: This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number 2008-ST-061-TS003. The work was conducted through the Mack-Blackwell Rural Transportation Center at the University of Arkansas and the Center for Transportation Safety, Security and Risk at Rutgers University.

Disclaimer: The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.
Inland Waterways

• Nearly 12,000 miles of navigable commercial inland and intracoastal waterways

• Disruption can have widespread economic and societal impact
 • 20% of coal
 • 40% of U.S. petroleum and petroleum products
 • 60% of grain exports

• One barge
 = 60 tractor trailers
 = 15 railcars

SOURCE: U.S. Army Corps of Engineers
Project Overview

• Funded through DHS National Transportation Security Center of Excellence
 – Collaborative project between University of Arkansas and Rutgers University
• Project dates July 2010 through June 2013
• Completed one of three project phases
Project Goal

• Develop a prototype decision support system that
 – Integrates cargo prioritization models, freight movement models and geographic information system (GIS) technology
 – Provides decision-making support for prioritization and offloading of waterborne cargo during major disruptions
 – Indicates level of resiliency in terms of multi-modal capacity in the event of attacks or natural disasters against inland waterway transportation systems
Project Deliverables

• Prototype SSRIW Decision Support System
 – Working prototype

• Conceptual Framework for National Model
 – Updated process flow chart showing data sources available and decision trees showing break out of different resources (rail cars, population centers, etc.)
Study Area

- 154 mile section of the Upper Mississippi River including Lock & Dam #14 just north of Davenport, Iowa and Lock & Dam #19 at Keokuk, Iowa
- Develop a digital and geospatially accurate map and related database of all
 - Locks, dams and bridges
 - Ports and terminals
 - Freight rail
 - Highways
 - Other infrastructure
Cargo Prioritization

• Systematic review of existing cargo prioritization measures and models

• Factors potentially impacting cargo prioritization
 – Risk, e.g., hazardous cargo
 – Economic value of cargo
 – Timing – normally FIFO
 – Seasonality
 – Perishability (grain)
 – Domestic/exports
 – Inventory levels
 – Criticality of empty barges
Cargo Prioritization (cont.)

• Beginning to interface with USCG on their procedures and existing tools for cargo priority
 – Overall requirements to facilitate recovery of commerce are common for all sectors
 – Variability by USCG sector
 • Procedures, tools
 • Uniqueness of commodity flow, ports
 • Seasonality, incident-specific issues
 – SSRIW DSS needs to be flexible enough to be tailored for use by each sector and incident
Infrastructure Knowledgebase

- Aerial Imagery
- Navigation Data Center / Master Docks Data
- Marine Transportation System Recovery Unit Data
- CTA Intermodal Network and Terminal Database*

Infrastructure Knowledgebase

Infrastructure Knowledgebase

Infrastructure Knowledgebase + CTA Intermodal Network and Terminal Database

Response Network

Conceptual Framework for National Model

Current Emergency Response Protocols

Decision Support System (DSS) w/ Graphical User Interface

Infrastructure Knowledgebase

Real-time data via Web Services

Automated prioritization of cargo movements

Improved, DSS supported response protocol workflow
Prototype Model Framework

Problem Definition & Identification of Stakeholders

Define requirements

System Design

Development Cycle (Prototypes to Final)

Testing

Final Implementation

System Design

Data:
• Geodatabase/SDE
• ORNL Transport Networks – Fortran – output are ascii files
• Prioritization Model – output TBD

Visualization:
• ArcServer 10
• Microsoft SQL
• ArcGIS API for Flex
• Time series
• User tools to be created in – VBA, C#, Java, ArcObjects, or Python
Research Team

University of Arkansas Mack-Blackwell Rural Transportation Center
Heather Nachtmann (PI): hln@uark.edu
Justin Chimka: jchimka@uark.edu
Edward Pohl: epohl@uark.edu
Letitia Pohl: lpohl@uark.edu
Jingjing Tong: tong@uark.edu
Ryan Black: rwblack@mail.uark.edu

Rutgers Center for Transportation Safety, Security, and Risk
Henry Mayer (PI): hmayer@ejb.rutgers.edu
Michael Greenberg: mrg@ejb.rutgers.edu
Jennifer Rovito: irovito@ejb.rutgers.edu
Matt Campo: mcampo@eden.rutgers.edu