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Abstract

Information markets are low volume markets whose prices offer informative esti-
mates on particular policy topics of interest. Observers have expressed concern that
such prices might be less informative due to manipulators, i.e., traders who prefer
that we see some policy estimates instead of others. We adapt a Kyle-style market
microstructure model to the case of information markets, by assuming risk-neutrality
and by allowing information effort and general trader irrationality. We add a trader
who has an additional quadratic preference regarding the price, and we make ordinary
traders uncertain about this manipulator’s target price. We find that the mean target
price has no effect on prices, but that increases in the variance of the target price
increase average price accuracy, by increasing the returns to informed trading.
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Introduction

Observers have long been impressed by the ability of speculative markets to aggregate avail-
able information; it is hard to find information that is not already embodied in the prices
of thick markets (Lo 1997). Recently some new markets, known as “information markets,”
“prediction markets,” or “idea futures,” have been created in an attempt to harness this
power on particular topics of interest (Chen and Plott 1998, Berg and Rietz 2003, Spann
and Skiera 2003, Wolfers and Zitzewitz 2004). Such markets seem to hold great promise for
better informing decisions in corporate governance and public policy (Hanson 1999).

Several concerns are often voiced about this approach. For example, during the recent
furor over the DARPA Policy Analysis Markets (PAM), otherwise known as “terrorism fu-
tures,” critics complained that PAM might have allowed bets on the details of individual
terrorist attacks.1 In particular, critics feared that bad guys might do more bad things in
order to win bets about those bad events, or that bad guys might intentionally lose bets in
order to reduce market information.2

Since existing thick financial markets already respond to major terrorist attacks, it seems
unlikely that new information markets, which are typically very thin, would offer substantial
additional incentives for bad guys to do bad things. The typical thinness of information
markets, however, does seem to make it cheap for bad guys to mislead markets with their
trades. And at least one apparently successful attempt to manipulate political information
markets has been reported (Hansen, Schmidt, and Strobel 2001).

Many others, however, have reported failed attempts to manipulate prices with trades,
historically (Strumpf and Rhode 2004), in the field (Camerer 1998), and in the laboratory
(Hanson, Oprea, and Porter 2004). A recent review article concludes that “none of these
attempts at manipulation had much of a discernible effect on prices, except during a short
transition phase” (Wolfers and Zitzewitz 2004). Why does this sort of manipulation3 seem

1Actually, PAM would have focused on aggregate geopolitical trends, such as how the chance of political
unrest in Saudi Arabia depends on whether US troops leave there (Polk, Hanson, Ledyard, and Ishikida
2003).

2Senators, reporters, and economists complained:

Terrorists themselves could drive up the market for an event they are planning and profit from
an attack, or even make false bets to mislead intelligence authorities. U.S. Senators Wyden
and Dorgan (2003), Press Release, July 28, 2003.

Would-be assassins and terrorists could easily use disinformation and clever trading strategies
to profit from their planned misdeeds while distracting attention from their real target. Steven
Pearlstein (2003), Washington Post, July 30, 2003.

Trading . . . could be subject to manipulation, particularly if the market has few participants
– providing a false sense of security or . . . alarm. . . . the lack of intellectual foundation or a
firm grasp of economic principles - or the pursuit of other agendas - has led to a proposal that
almost seems a mockery of itself. Joseph Stiglitz (2003), Los Angeles Times, July 31, 2003.

3Other kinds of “manipulation” not considered here include hidden actions that influence events, deceptive
cheap talk intended to influence prices (Allen and Gale 1992), and strategic contrary trading made by an
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to be less of a problem than many fear it should be?
One possible explanation is the view that a manipulative trader is in essence a “noise”

trader, in the sense that his trades are based on considerations other than his best estimate of
asset value. Standard models of market microstructure find that when potentially informed
traders have deep pockets relative to the volume of noise trading, increases in trading noise
do not directly effect price accuracy. In addition, by inducing more traders to become better
informed, an increase in noise trading indirectly improves the accuracy of market prices
(Kyle 1989, Spiegel and Subrahmanyam 1992). If the presence of manipulative traders
similarly induced more effort by informed traders, this could help explain the typical failure
of manipulation attempts.

This paper presents a formal model which confirms this view of manipulative traders as
noise traders. We start with one of the simplest standard models of market microstructure,
the single-period simplification of Kyle (1989, 1985) as it appears in popular textbooks
on market microstructure (O’Hara 1997, Brunnermeier 2001). This simplified Kyle model
contains some noise traders, some potentially informed traders, and some competitive market
makers. We adapt this standard model to the case of a thin information market, and then
add a manipulator, i.e., a trader who has an additional preference over the market price, or
equivalently over the beliefs of neutral observers.

We are interested in the case of a thin information market, where the quantity traded is
small, where relevant information can be obtained with some effort, and where there may be
no liquidity traders to attract rational speculators. We thus consider the case of risk neutral
traders who can buy information, and who may be, but need not be mildly irrational. That
is, each trader’s information depends on his choice of an information effort, and we allow
trading choices to be made using a standard general model of irrational behavior, the quantal
response noisy game theory equilibrium (McKelvey and Palfrey 1995, Goeree and Holt 2001).

Into this basic information market model we add a manipulator who, in addition to the
usual profit-based payoff, has a quadratic preference for the market price to be close to a
target price. (This generalizes a previous model which had a linear manipulator preference
(Kumar and Seppi 1992).) Other traders know the strength of this quadratic preference, but
have only a noisy clue about the manipulator’s target price. To study a best case for the
possibility of manipulation, we consider a single fully-rational manipulator.

We find that the manipulator’s mean target price has no effect on the market price, and
that variance in the manipulator’s target price has no direct effect on average price accuracy.
However, by increasing the expected rewards to informed trading, a larger manipulator
variance indirectly increases the accuracy of the market price as an estimate of fundamental
asset value. Thus in a standard market microstructure model of thin information markets,
with rational or irrational traders who can obtain information with effort, manipulator bias
that is within the range of biases that traders suspect might exist will on average improve
price accuracy.4

informed trader to control the rate at which his information is revealed (Chakrabortya and Ylmaz 2004).
4Of course it is possible for the average social harm from price errors to increase even as the average price

errors decrease, if social harm varies in complex ways with price errors. As we lack a model of social harm
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Model

The simplest standard model of market microstructure is arguably the one-period version
of Kyle (1989, 1985) that appears in popular textbooks on market microstructure (O’Hara
1997, Brunnermeier 2001). In one version of this model, there is a single asset of uncertain
value, and a single risk-neutral informed agent who has a noisy clue about this asset value.
This informed agent chooses a quantity of the asset to buy or sell. A “noise” or “liquidity”
trader asks to trade a random quantity at the same time, and these two orders are combined
into a net market order, which is observed by a competitive risk-neutral market maker. This
market maker then sets the price for these trades to be the expected value of the asset
conditional on seeing this net market order.

Let us modify this standard model to describe a thin information market with a manip-
ulative trader. That is, consider a single asset whose true value is drawn as v ∼ N(v̄, Sv),
i.e., from a normal distribution with mean v̄ and (finite) variance Sv > 0. We will allow for
the possibility of a liquidity trade quantity l drawn as l ∼ N(l̄, Sl), but all our results will
hold when Sl = 0. (Unless specified otherwise, all parameters are drawn independently.)

There are T traders, labeled i ∈ {1, 2, . . . , T}, each gaining a trading profit

πi(xi) = xi(v − P )

if he buys a quantity xi when the asset price is P . We assume risk-neutrality because we are
interested in thin, i.e., low volume, information markets, and it is already established that
increased noise trading can reduce price accuracy when informed trader risk aversion makes
the informed trade volume small compared to the noise trade volume (Kyle 1989).

We also add a special trader, i = 0, with an extra quadratic preference regarding the
market price P .5 His profit can be written in two equivalent forms, either in terms of a
target price t or in terms of a bias w, as

π0(x0) = x0(v − P ) − k(t − P )2

= x0(v − P ) − k(v̄ − P )2 + wP − k̂, (1)

assuming k ≥ 0. One can translate between these forms using w = 2k(t − v̄) and k̂ =
k(t2 − v̄2). Since this additional preference gives this trader a special reason to manipulate
the price, we call this trader6 the “manipulator.”

We will use the form shown in equation 1 because this explicitly includes the case of a
linear manipulation preference, where k = 0 and w �= 0. Such a linear preference has been
considered previously, in a model where a trader seeks to manipulate a spot market in order
to raise the value of assets previously acquired in a futures market (Kumar and Seppi 1992).

from price errors, we do not further consider this possibility here.
5This ends up being the same as having a preference over the beliefs of outside observers.
6We introduce only one manipulator in order to study a best case for manipulation. This single trader

can represent a group of manipulators with maximal internal coordination.
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We assume that k is common knowledge, but that “bias” w (or equivalently the target price
t) is private information to the manipulator, and is only commonly known to have been
drawn as w ∼ N(w̄, Sw).

Of the T traders, let us assume that N of them can acquire information about the true
asset value v, and about the manipulator’s bias w. Specifically, each informed trader i
observes the clues ai = v + εi and bi = w + δi, where εi ∼ N(ε̄, Si) and δi ∼ N(δ̄, Sδ). If we
define relative clue accuracy as ηi ≡ Sv/(Sv +Si) and ρ ≡ Sw/(Sw +Sδ), then these clues give
traders improved estimates E[∆v|ai] = ηi∆ai and E[∆w|bi] = ρ∆bi, where for any variable
f the deviation from its mean is ∆f ≡ f − E[f ].

We assume that each informed trader can reduce the variance Si of his asset value clue
via costly effort c(Si), where c′(Si) < 0, c′′(Si) > 0, and c(∞) = 0. Full trader profit is thus

πi(xi, Si) = xi(v − P ) − c(Si).

The N informed traders can choose Si ∈ [0,∞), and get Sδ < ∞, while the other uninformed
traders are stuck with Si = Sδ = ∞. For simplicity, we also assume S0 = ∞, so that the
manipulator has no private information on the asset value, though he does know w.

The order of actions is as follows. First, every informed trader chooses his clue noise Si.
Second, every trader observes his clues ai, bi. Third every trader chooses his market order
xi. No trader sees any other player choices before choosing Si or xi, and so informed trader
effort c(Si) is hidden. Fourth, orders xi are summed and added to the liquidity trade l to
produce a total order

y = l +
T∑

i=0

xi.

Finally, the market maker observes this total order y and sets the market price to be

P = E[v|y] + θ,

where θ ∼ N(0, Sθ) describes error in the (unmodeled) price setting process.
The optimal actions, expressed in terms of expected profit, are thus

S∗
i = argmaxSi∈R+ [ ¯̄πi(Si) ≡ E[πi(x

∗
i (Si), Si)|Si] ] ,

x∗
i (Si) = argmaxxi∈R [ π̄i(xi) ≡ E[πi(xi, Si)|ai, bi, xi] ] ,

x∗
0 = argmaxx0∈R [ π̄0(x0) ≡ E[π0(x0)|w, x0] ] .

While all our results will hold when all traders choose optimal quantities x∗
i , we also allow

irrational choice given by the widely used noisy game theory, the quantal response equilibrium
(McKelvey and Palfrey 1995, Goeree and Holt 2001). This gives a probability density of

Pr[xi] =
exp(π̄i(xi)/ri)∫∞

−∞ exp(π̄i(x′
i)/ri) dx′

i

, (2)
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where ri ≥ 0 is the irrationality of trader i. When ri = 0, then xi = x∗
i for sure. To allow a

best case for manipulation, we assume r0 = 0.
Ultimately, we want to know whether a stronger manipulator preference reduces or in-

creases price accuracy. That is, how does the distribution of the error of the price as an
estimate of value, P − v, including its mean E[P − v] and mean square

Φ = E[(P − v)2],

respond to changes in the parameters w̄ and Sw describing the distribution of manipula-
tor bias? (When we change the variance Sw we will assume that the clue error Sδ varies
proportionally, so that the ratio Sw/Sδ remains constant.)

Analysis

As is standard in such a model, we seek equilibria where the price and quantities are linear
in the various clues and parameters. Such linear equilibria are possible because we have
assumed jointly normal distributions, which gives linear conditional expectations, such as

E[v|y] = v̄ + ∆y
E[∆v∆y]

E[∆y∆y]
. (3)

For clarity, we also focus on deviations from means. We thus we seek equilibria where

P = µ + λ∆y + θ, (4)

x∗
i = αi + βi∆ai + γi∆bi, (5)

x∗
0 = τ + γ0∆w. (6)

for certain values µ, λ, αi, βi, γi, τ, γ0. We furthermore seek equilibria which are symmetric
within each class of traders. That is, for all informed traders Si = Sε, ηi = η, αi = α, βi = β,
and γi = γ, and for all other traders (besides the manipulator) αi = βi = γi = 0.

Linear strategies make profit functions π̄i(xi) quadratic, and so quantal response behavior
of equation 2 makes trading errors ei = xi − x∗

i normally distributed. Thus ei ∼ N(0, Sei),
with a variance of Sei = −ri/π̄

′′
i , expressed using the constant second derivative of π̄i(xi). We

can combine these trading errors to obtain a total noise trade of e ≡ ∑T
i=0 ei with variance

SE ≡ ∑T
i=0 Sei. This allows us to redescribe the total order as

y = l + e +
T∑

i=0

x∗
i ,

a form into which we can substitute our linear equations 4, 5, and 6.
Making such substitutions in our price error form gives

Φ = Sθ + Sv(1 − Nλβ)), (7)
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and in the market maker equations 3 and 4 gives µ = v̄, implying E[P − v] = 0, and

1

λ
=

SE + SX

βNSv
+

β(NSv + Sε)

Sv
, (8)

where non-error trading noise is

SX ≡ Sl + Nγ2Sδ + (γ0 + γN)2Sw.

Substituting into the expected trader profit forms gives

π̄0(x0) = wv̄ − λ(x0 − w)(∆x0 + Nγ∆w) − k̂ − kSθ − kλ2(Sl + SE)

−kλ2(∆x2
0 + 2γN∆w∆x0 + β2N(NSv + Sε) + γ2N(N∆w2 + Sδ))

π̄i(xi) = xi[(1 − λβ(N − 1))ηi∆ai − λ(∆xi + (γ0 + γ(N − 1))ρ∆bi)] − c(Si)

¯̄πi(Si) = βi(1 − λ(β + (N − 1))Sv − λ(β2
i (Sv + Si) + γ2Sδ + γ(γ0 + Nγ)Sw) − c(Si)

Note that when choosing Si, agent i must distinguish the equilibrium value β from the value
βi that will describe his behavior if he makes an out of equilibrium choice of Si �= Sε.

For the uninformed traders π̄i(xi) = −λxi∆xi, making the first order condition (FOC)
on xi be x∗

i = 0, which gives αi = βi = γi = 0 as we had assumed. The FOC on xi for
informed traders and manipulators give αi = 0, τ = w̄ and

βi = (1/λ + β(N − 1))ηi/2, (9)

γi =
−ρ

Nρ + 2(2 − ρ)(1 + kλ)
,

γ0 =
Nρ + 2 − ρ

Nρ + 2(2 − ρ)(1 + kλ)
,

1/λβ = N + 1 + 2Sε/Sv (10)

The second order condition (SOC) for manipulators is 0 ≥ π̄′′
0 = −2λ(1 + kλ), and for all

other traders is 0 ≥ π̄′′
i = −2λ. If we assume a strict interior optimum of x∗

i , then λ > 0.
And since r0 = 0, we have SE = r/2λ, for r ≡ ∑T

i=1 ri ≥ 0.
Equation 10 can be substituted into equation 7 to give our first result.

Theorem 1 Given a fixed number of informed traders N and price setting error Sθ, the
error P − v of price as an estimate of asset value is distributed with mean zero, and variance

Φ = Sθ + Sv

(
1 − N

N + 1 + 2Sε/Sv)

)
,

which depends only on (and is increasing in) the equilibrium asset value clue variance Sε.

Thus there is on average no net bias, and the manipulator bias distribution w ∼ N(w̄, Sw)
can only effect price accuracy by effecting the informed trader’s choices of clue variance Sε.
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The FOC and SOC for the choice of Si are ¯̄π′
i(Si) = 0 and ¯̄π′′

i (Si) ≤ 0, where these
expressions hold constant β, η, Sε, λ, γ, γ0, while allowing βi, ηi to vary with Si. We assume
that c′′(Si) is large enough to induce a strict interior optimum, so that ¯̄π′′

i (Sε) < 0, Sε < ∞.
Solving equations 8, 9, and 10 gives a quadratic equation, whose solution is

β = β0 ±
√

β2
0 + SX/N(Sv + Sε) (11)

where

β0 =
r(N + 1 + 2Sε/Sv)

2N(Sv + Sε)
.

The negative solution violates the SOC on x∗
i (λ > 0), so only the positive solution is valid.

Equations 10 and 11 show that an equilibrium exists, with λ and β finite and non-zero,
when any one of Sl, Sw, or r is non-zero (and all are finite). Thus liquidity trading is not
required to produce an information market equilibrium; a manipulator with unknown bias
or any trader irrationality can substitute as a source of noise trading.

We are interested in how the price error Φ changes as we change the parameters (k, w̄, Sw, Sδ)
that describe the manipulator. We already know that w̄ has no effect on prices. Let us now
consider a proportional variation of Sw and Sδ together. That is, let us hold ρ constant while
we increase Sw, keeping a proportional Sδ = Sw(1− ρ)/ρ. This variation plausibly describes
a change to situation with “more” manipulation and similar clues about such manipulation.

We can show that as Sw and Sδ increase together in this way, the equilibrium trader clue
error Sε will decrease, lowering average price error Φ.

Theorem 2 Changes in the mean manipulator bias w̄ have no effect whatsoever on prices.
When the variance of manipulator bias Sw and bias clue error Sδ increase in the same
proportion, trader asset clue variance Sε and price error Φ both decrease.

Proof The first claim follows trivially because w̄ only effects τ , which does not effect
price P . Regarding the second claim, if we define π̂(Si) ≡ ¯̄πi(Si)+c(Si), then the FOC for Si

can be written c′ = π̂′ = −λβ2
i and the SOC can be written c′′ ≥ π̂′′, where only βi, ηi vary

with Si. If we differentiate this FOC with respect to Sw and collect terms appropriately, we
find

(π̂′′ − c′′)
dSε

dSw
= − ∂

∂Sw

∣∣∣∣∣
Sε

π̂′ =
∂

∂Sw

∣∣∣∣∣
Sε

⎛
⎝β0 +

√
β2

0 + SX

N(Sv+Sε)

N − 1 + 2/η

⎞
⎠ . (12)

In the far right term, when Sε is held constant then only SX depends on Sw. So if we assume
a strict interior optimum of Si, with the SOC holding strictly (π̂′′ − c′′ > 0), we must have

−sign

[
dSε

dSw

]
= sign

[
∂SX

∂Sw

∣∣∣∣∣
Sε

]

Substituting proportional variation of Sw and Sδ into our expression for SX, and differenti-
ating, we find
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∂SX

∂Sw

∣∣∣∣∣
Sε

(
1 + 4kSw(2 − ρ)

Nρ(1 − ρ) + (2 − ρ)2

(Nρ + 2(2 − ρ)(1 + kλ))3

∂λ

∂SX

∣∣∣∣∣
Sε

)
=

Nρ(1 − ρ) + (2 − ρ)2

(Nρ + 2(2 − ρ)(1 + kλ))2
.

If we take the derivative of λ with respect to SX, we can rearrange and find that SX increases
in Sw, and hence Sε and Φ decrease in Sw, when

1 >
β − 2β0

β − β0

× 2(2 − ρ)kλ

Nρ + 2(2 − ρ)(1 + kλ)
× Sw

Sw + Sl
(Nρ+2(2−ρ)(1+kλ))2

Nρ(1−ρ)+(2−ρ)2

.

The right hand side here is a product of three non-negative terms, each of which is no greater
than one, and one of which (the middle) is strictly less than one. QED.

Conclusion

It is natural for people to fear that a complex social institution that they do not understand
will be used by their enemies to hurt them. Thus people might naturally fear that information
markets on the topic of their enemies, such as the Policy Analysis Market might have been,
would be used by those enemies to hurt them. And while the low volume of such markets
limits the profits that such enemies might realize from trading, that low volume seems to
make it cheap for enemies to manipulate perceptions with their trades. This has led to fears
that manipulators may decrease price accuracy.

Historical, field, and laboratory data, however, have failed to find substantial effects
of such manipulation on average price accuracy. Since previous models have found that
increases in noise trading can increase the accuracy of thin markets, by increasing the rewards
to informed trading, we might hypothesize that manipulators are like noise traders, in that
both make trades based on considerations other than their best estimate of the asset value.

This paper has presented a standard Kyle-style market microstructure model that con-
firms this basic hypothesis. Adapting this standard model to the case of an information
market, and adding in a manipulator, we find that a manipulator can substitute for a liq-
uidity trader or for trader irrationality to produce an information market equilibrium. A
manipulator with a known target price preference has no effect on the market price, but one
whose target price is unknown is much like a noise trader with an unknown trading quantity.
The prospect of trading against someone who trades on non-asset-value considerations can
entice other traders to become better informed, increasing average price accuracy.

While the social desirability of information markets remains an open question, this model
suggests that concerns about manipulators reducing average price accuracy are misplaced.
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