Issues in Epidemiologic Design and Analysis

Dan Wartenberg, PhD
David Ozonoff, MD, MPH

Problems in Conducting Studies

• Precision (lack of random error)
 – Depends on study size and efficiency
 • like coin flips; false positives; false negatives

• Validity (lack of systematic error)
 – Internal
 • Bias—playing favorites
 – selection, information, recall
 • Confounding—finding for the wrong reason
 – factor associated with disease and exposure
 • Misclassification
 – mislabeling, bad model, missing information
 – External
 • Generalizability

Internal Validity

• Bias is a distortion of study results
 – Can occur in any study design
 – Is an inherent flaw—cannot be fixed

• Some types of bias:
 – Selection, Information, Participation, Recall, Confounding

Selection Bias

• Selection—enrolling subjects
 – Differences between groups of subjects relative to that in the larger population—picking favorites
 • Does exposure status affect enrollment in a case control study?
 • Does disease status affect enrollment in a cohort study
 – Example: Hawthorne Effect
 – Example: Caffeine and Pancreatic Cancer
 – Example: Healthy Worker (Survival) Effect

Information Bias

 – Information—measurement errors
 • Differential or non-differential
 • Disease and risk factors

Other Types of Bias

 – Participation, Response, Loss to follow up
 – Recall—memory trigger
 – Berkson’s Bias—differences of a hospital population
 – CONFOUNDING
Confounding—1

- Mixing of effects (Rothman)
 - estimate of effect of exposure is distorted
 - mixed with the effect of an extraneous factor
- Example
 - Add fluoride to drinking water
 - Implement dental hygiene education program
 - Dental caries decline
 - Which caused the observed effect?
- Example: cigar smoking and baldness

Confounding—2

- Requirements for Confounding
 - Extraneous factor
 - must be predictive of disease (e.g., age, SES)
 - must be associated with exposure among cases
 - must NOT be intermediate step in causal path between exposure and disease

Confounding—3

- Confounding can occur even if there is no effect of exposure
- Example: alcohol consumption and oral cancer
 - Association observed
 - Smoking is extraneous factor
 - Affects oral cancer cancer rate in non-drinkers
 - Is associated with alcohol drinking
 - More smokers among alcohol drinkers
 - The effect of alcohol is distorted by smoking
 - Size of effect depends on
 - Size of smoking effect
 - Strength of association between smoking and drinking

Confounding—4

- Confounding is a bias
 - prevent by design
 - remove (control) through analysis

Prevention of Confounding

- Randomization--experimental studies
- Restriction--limit subject population to those with in specified category(s) of extraneous factor(s)
- Matching--each pair has same value for extraneous factor
 - Expensive
 - Requires specialized analytic methods
 - Concern: overmatching

Matching: What is it?

- Selection of comparison or reference series that is identical (or nearly so) to the index series with respect to the distribution of one or more potentially confounding variables.
- Matching improves efficiency, not validity
Types of Matching

- Frequency Matching
 - define strata
 - estimate number of cases in each
 - select appropriate number of controls for each
- Individual Matching
 - match each case with one or more controls
 - used historically
 - has some methodologic problems

Matching: When to Use

- exposure disease association weak
- exposure rare
- only a few variables to match on
 - otherwise cumbersome and expensive

Matching: Summary

- Select specified comparison subjects
- Advantages
 - gain in precision (more balanced design)
- Disadvantages
 - introduce confounding
 - limit analytic options
 - cannot assess effect of “matched” variable
 - more difficult and costly to implement

Control of Confounding

- Stratification
 - group data into (homogeneous) categories of extraneous factor
 - analyze for each category
 - combine for summary estimate
- Multivariate analysis
 - adjust through statistical modeling

An Example of Confounding

<table>
<thead>
<tr>
<th></th>
<th>Age <40 User</th>
<th>Age <40 Non User</th>
<th>Age 40-44 User</th>
<th>Age 40-44 Non User</th>
<th>Totals User</th>
<th>Totals Non User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>21 User</td>
<td>26 Non User</td>
<td>18 User</td>
<td>88 Non User</td>
<td>39 User</td>
<td>114 Non User</td>
</tr>
<tr>
<td>Controls</td>
<td>17 User</td>
<td>59 Non User</td>
<td>7 User</td>
<td>95 Non User</td>
<td>24 User</td>
<td>154 Non User</td>
</tr>
<tr>
<td>OR</td>
<td>2.8</td>
<td>2.8</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limitations of Stratification

- As number of confounders increase, the size of each stratum gets very small
- Difficult to discern confounding from effect modification with large number of variables
Effect Modification (Interaction)
• Change in the magnitude of an effect measure according to the value of an extraneous factor (i.e., heterogeneity)
• EM is a characteristic to be reported rather than a bias to be avoided
• Includes both synergy and antagonism
 Example: smoking (5x), asbestos (10x) and lung cancer

Data with Effect Modification

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>1/2 pack</td>
<td>415</td>
<td>342</td>
</tr>
<tr>
<td><1/2 pack</td>
<td>232</td>
<td>280</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>1/2 pack</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td><1/2 pack</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>

From Doll and Hill 1950 BMJ

\[
\chi^2 = 1.5
\]

\[
OR_{\text{male}} = 1.5 (1.2, 1.8)
\]

\[
OR_{\text{female}} = 2.9 (1.0, 8.2)
\]

\[
OR_{\text{male}} = 1.5 (1.2, 1.9)
\]

\[
OR_{\text{female}} = 1.5 (1.2, 1.9)
\]

Confounding vs. Effect Modification
• Either, both or none may be present
• Confounding
 – depends on distribution of factor among strata
 – a nuisance effect to be adjusted for
• Effect Modification
 – effect differs in size/direction among strata
 – an inherent feature of the strata to be described
• Effect Modification supercedes Confounding

EM/Confounding Flow Chart

Misclassification
• Differential vs. Non-differential
• Examples
 – Mislabeling
 – Bad model
 – Missing information

External Validity
• Generalizability
 – Issues
 • Representativeness of subjects
 • Subjects with appropriate characteristics
 • Extrapolation
 • Development of “universal” hypothesis
When is screening appropriate?

- If condition found, is treatment effective?
 - Efficacy, patient compliance, early treatment
- How great is the burden of suffering?
 - Death, disease, disability, discomfort, dissatisfaction, destitution
- How accurate is the screening test?
 - Sensitivity, specificity, simplicity, cost, safety (risks), acceptability, labeling effects
- How common is the disease?