Lipschitz Quotients

[S. Bates], W.B.J., J. Lindenstrauss, D. Preiss, G. Schechtman

Background

A mapping \(f : X \to Y \), is a co-Lipschitz map provided there is a constant \(C \) so that for all \(x \) in \(X \) and all \(r \),

\[
f[B_r(x)] \supset B_{r/C}(f(x)).
\]

co-Lip\((f)\) denotes the smallest such \(C \).

A co-Lipschitz map is open in a Lipschitz sense. A function is a **Lipschitz quotient map** if it is both Lipschitz and co-Lipschitz. Thus a one-to-one map is a Lipschitz quotient mapping iff it is bi-Lipschitz.

If there is a Lipschitz quotient map \(f \) from \(X \) onto \(Y \), we say \(Y \) is a Lipschitz quotient of \(X \) (\(\lambda \)-Lipschitz quotient if \(\text{Lip}(f) \cdot \text{co-Lip}(f) \leq \lambda \)).
A mapping \(f : X \to Y \), is a **co-Lipschitz** map provided there is a constant \(C \) so that for all \(x \) in \(X \) and all \(r \),

\[
f[B_r(x)] \supset B_{r/C}(f(x)).
\]

Related concept [David-Semmes]

\(T : X \to Y \) is ball non collapsing provided \(\exists \ \omega > 0 \) s.t. \(\forall x \in X \ \exists y \in Y \) s.t.

\[
TB_r(x) \supset B_{\omega r}(y).
\]

Example of a ball non collapsing Lipschitz map which is NOT a Lipschitz quotient: fold a sheet of paper.
Examples of Lipschitz quotients maps in \mathbb{R}^n

From \mathbb{R} to \mathbb{R} they must be bi-Lipschitz.

From \mathbb{R}^2 to \mathbb{R}, they carry considerable structure. For example, the number of components of $f^{-1}(t)$ is bounded and each component of $f^{-1}(t)$ separates the plane.

Define f on \mathbb{R}^2 to be the homogenous extension to \mathbb{R}^2 of the mapping $z \mapsto z^n$ on the unit circle. This is a Lipschitz quotient mapping which is “typical” – EVERY Lipschitz quotient map on \mathbb{R}^2 can be written as $P \circ h$ where P is a (complex) polynomial and h is a homeomorphism of \mathbb{R}^2.

From \mathbb{R}^3 to \mathbb{R}^2, $f^{-1}(t)$ can contain a plane but cannot be a plane. [Csornyei]

References for non linear quotients in \mathbb{R}^n: [JLPS], [Csornyei], [Heinrich], [Randriantoanina], [Maleva].
A mapping $f : X \to Y$, is a **co-Lipschitz** map provided there is a constant C so that for all x in X and all r,

$$f[B_r(x)] \supset B_{r/C}(f(x)).$$

Let $f : X \to Y$ be a surjective Lipschitz map. Then co-Lip$(f) < \lambda$ iff for all finite weighted trees T, $t_0 \in T$, $g : T \to Y$ with Lip$(g) \leq 1$, and $x_0 \in X$ with $f(x_0) = g(t_0)$, there exists a lifting $\tilde{g} : T \to X$ so that $\tilde{g}(t_0) = x_0$, Lip$(\tilde{g}) \leq \lambda$, and $g = f \circ \tilde{g}$.
For Banach spaces, the fundamental question is:

If Y is a Lipschitz quotient of X, [when] must Y be a linear quotient of X?

In every case where we know “Y is a Lipschitz quotient of X \implies Y is a linear quotient of X” we also know that the existence of a ball non collapsing Lipschitz map from X to Y implies that Y is a linear quotient of X.

We do not know whether in general the existence of a ball non collapsing Lipschitz map from X to Y implies that Y is a Lipschitz quotient of X.
f admits **affine localization** if for every $\varepsilon > 0$ and every ball $B \subset X$ there is a ball $B_r \subset B$ and an affine function $L : X \to Y$ so that
\[
\| f(x) - Lx \| \leq \varepsilon r, \quad x \in B_r.
\]

The couple (X, Y) has the **approximation by affine property (AAP)** if every Lipschitz map from X into Y admits affine localization.

AAP is enough to ensure that if f is a Lipschitz quotient map from X to Y then (for ε small enough) the linear approximant is a linear quotient map; and if f is a λ-Lipschitz quotient, (i.e., $\text{Lip}(f) \cdot \text{co-Lip}(f) \leq \lambda$) the linear approximant is a $\lambda + \varepsilon$ linear quotient.
f admits δ-affine localization if for every $\varepsilon > 0$ and every ball $B \subset X$ there is a ball $B_r \subset B$ and an affine function $L : X \to Y$ so that
\[\|f(x) - Lx\| \leq \varepsilon r, \quad x \in B_r \]
and $r \geq \delta(\varepsilon) \text{radius}(B)$ ($\delta(\varepsilon) > 0$ $\forall \varepsilon > 0$).

The couple (X, Y) has the uniform approximation by affine property (UAAP) if there is a function $\delta(\varepsilon) > 0$ so that every Lipschitz map with constant one from X into Y admits δ-affine localization.

This notion (not the terminology) was introduced by [David-Semmes]. They proved that (X, Y) has the UAAP if both spaces are finite dimensional.

Theorem. The couple (X, Y) has the UAAP iff one of the spaces is super-reflexive and the other is finite dimensional.

A Banach space is super-reflexive iff it is isomorphic to a uniformly convex space iff it is isomorphic to a uniformly smooth space.
Repeat:

(1) If \((X, Y)\) has the AAP and \(Y\) is a \(\lambda\)-Lipschitz quotient of \(X\) then \(Y\) is a \((\lambda + \epsilon)\)-isomorphic to a linear quotient of \(X\).

(2) If \(X\) is super-reflexive and \(Y\) is finite dimensional, then \((X, Y)\) has the AAP.

Therefore:

(3) If \(X\) is super-reflexive and \(Z\) is a \(\lambda\)-Lipschitz quotient of \(X\), then every finite dimensional quotient of \(Z\) is \((\lambda + \epsilon)\)-isomorphic to a linear quotient of \(X\) (\(\iff\) every finite dimensional subspace of \(Z^*\) is \((\lambda + \epsilon)\)-isomorphic to a subspace of \(X^*\)).

(4) If \(Z\) is a \(\lambda\)-Lipschitz quotient of a Hilbert space, then \(Z\) is \(\lambda\)-isomorphic to a Hilbert space.

(5) If \(Z\) is a \(\lambda\)-Lipschitz quotient of \(L_p\), \(1 \leq p < \infty\), then \(Z\) is \(\lambda\)-isomorphic to a quotient of \(L_p\).
The classification of Lipschitz quotients of ℓ_p, $1 < p \neq 2 < \infty$ is open. A Lipschitz quotient of ℓ_p is a Lipschitz quotient of L_p. For $2 \leq r < p < \infty$, the space ℓ_r is linear quotient of L_p but is not a Lipschitz quotient of ℓ_p.

There are known to exist non separable Banach spaces X and Y which are bi-Lipschitz equivalent but not isomorphic [Aharoni-Lindenstrauss]. It turns out that Y is not even a isomorphic to a linear quotient of X.

It may be that separable Banach spaces that are bi-Lipschitz equivalent must be isomorphic. The results on quotients suggest that if X is separable and Y is a Lipschitz quotient of X, then Y is isomorphic to a linear quotient of X (at least if X is one of the classical examples of Banach spaces). However,....
A metric space X is a *metric tree* provided it is complete, metrically convex, and there is a unique arc (which then by metric convexity must be a geodesic arc) joining each pair of points in X. There is an equivalent constructive definition of a separable metric tree, which we term an SMT because the equivalence to separable metric tree is not needed. Using the constructive definition, it is more-or-less clear that every metric tree is obtained by starting with a (possibly infinite) weighted tree and filling in each edge with an interval whose length is the distance between the vertices of the edge.

The ℓ_1 union of two metric spaces

If $X \cap Y = \{p\}$, the ℓ_1 union is $(X \cup Y, d)$, where the metric d agrees with d_X on X, d agrees with d_Y on Y, and if $x \in X$, $y \in Y$, then $d(x, y)$ is defined to be $d_X(x, p) + d_Y(p, y)$.

Metric trees and Lipschitz Quotients of spaces containing ℓ_1 [JLPS]
Construction of an SMT

Let I_1 be a closed interval or a closed ray and define $T_1 := I_1$. The metric space T_1 is the first approximation to our SMT. Having defined T_n, let I_{n+1} be a closed interval or a closed ray whose intersection with T_n is an end point, p_n, of I_{n+1}, and define $T_{n+1} := T_n \cup_1 I_{n+1}$. The completion, T, of $\bigcup_{n=1}^{\infty} T_n$ is an SMT. If each I_n is a ray with end point p_{n-1} for $n > 1$ and the set $\{p_n\}_{n=1}^{\infty}$ of nodal points is dense in T, then we call T an ‘ℓ_1 tree’ and say that $\{I_n\}_{n=1}^{\infty}$, $\{T_n\}_{n=1}^{\infty}$, $\{p_n\}_{n=1}^{\infty}$ describe an allowed construction of T.

Proposition. Let T be an ℓ_1 tree. Then every separable, complete, metrically convex metric space is a 1-Lipschitz quotient of T.
Proposition. Let T be an ℓ_1 tree. Then every separable, complete, metrically convex metric space is a 1-Lipschitz quotient of T.

Let Y be a separable, complete, metrically convex metric space. Build the desired Lipschitz quotient map by defining it on T_n by induction (where $\{I_n\}_{n=1}^{\infty}$, $\{T_n\}_{n=1}^{\infty}$, $\{p_n\}_{n=1}^{\infty}$ describe an allowed construction of T).

Suppose you have a 1-Lipschitz map $f : T_n \to Y$, and y is taken from some countable dense subset Y_0 of Y. Extend f to T_{n+1} by mapping I_{n+1} to a geodesic arc $[f(p_n), y]$ which joins $f(p_n)$ to y; f is an isometry on $\{z \in I_{n+1} : d(p_n, z) \leq d(f(p_n), y)\}$ and f maps points on I_{n+1} whose distance to p_n is larger than $d(f(p_n), y)$ to y. This makes f act like a Lipschitz quotient at p_n relative to $[f(p_n), y]$. Since the nodal points are dense in T, a judicious selection of the points from Y_0 will produce a 1-Lipschitz quotient mapping.
Lemma. Assume that X and Y are 1-absolute Lipschitz retracts which intersect in a single point, p. Then $X \cup_1 Y$ is also a 1-absolute Lipschitz retract.

A metric space X is a 1-absolute Lipschitz retract if and only if X is metrically convex and every collection of mutually intersecting closed balls in X have a common point.

Corollary. Let T be an SMT. Then T is a 1-absolute Lipschitz retract.
Proposition. Every SMT is a 1-Lipschitz quotient of $C(\Delta)$, where Δ is the Cantor set $\{-1, 1\}^\mathbb{N}$.

Let r_n be the nth coordinate projection on Δ. In the space $C(\Delta)$, the sequence $\{r_n\}_{n=1}^\infty$ is isometrically equivalent to the unit vector basis of ℓ_1. For $n = 1, 2, \ldots$, let E_n be the functions in $C(\Delta)$ which depend only on the first n coordinates. Notice that if x is in E_n and $m > n$ then for all real t, $\|x + tr_m\| = \|x\| + |t|$. In other words, if I is a ray in the direction of r_m emanating from a point p in E_n, then, in $C(\Delta)$, the set $E_n \cup I$ is an ℓ_1 union of E_n and I.

That $\{r_n\}_{n=1}^\infty$ acts like the ℓ_1 basis over $C(\Delta)$ is the key to proving the above proposition. The lemma is used to extend a 1-Lipschitz mapping from $E_n \cup I$ into the SMT to a 1-Lipschitz mapping from E_m into the SMT.
Corollary. If Y is a separable, complete, metrically convex metric space, then Y is a 1-Lipschitz quotient of $C(\Delta)$.

In particular, every separable Banach space is a 1-Lipschitz quotient of $C(\Delta)$, but it is well known that e.g. ℓ_1 is NOT isomorphic to a linear quotient of $C(\Delta)$.

From known results in the linear theory it then follows:

Theorem. Let X be a separable Banach space which contains a subspace isomorphic to ℓ_1 and let $\varepsilon > 0$. Then every separable, complete, metrically convex metric space is a $(1 + \varepsilon)$-Lipschitz quotient of X. (Moreover, the Gateaux derivative of the Lipschitz quotient mapping has rank at most one wherever it exists.)
$f : X \to \mathbb{R}^n$ is measure non collapsing provided $\mu f(B_r(x)) \geq \delta r^n$; f is ball non collapsing if $f(B_r(x)) \supset B_{\delta r}(y)$ ($\mu = \text{Lebesgue measure}$).

[David-Semmes] if $f : \mathbb{R}^m \to \mathbb{R}^n$ is Lipschitz and measure non collapsing then it is ball non collapsing. \mathbb{R}^m can be replaced by any super-reflexive space [BJLPS].

If X is a separable Banach space containing an isomorph of ℓ_1 then $\exists f : X \to \mathbb{R}^2$ Lipschitz, measure non collapsing, but $f(X)$ is closed and has empty interior (hence f is NOT ball non collapsing).
Problems and concluding remarks

(1) Classify the metric spaces which are Lipschitz quotients of a Hilbert space. In particular, must each such space bi-Lipschitz embed into a Hilbert space?

(2) Classify the metric spaces which are Lipschitz quotients of a subset of a Hilbert space.

We know only:

(2.1) There are metric spaces which are not Lipschitz quotients of any subsets of a Hilbert space.

(2.2) There are metric spaces which are Lipschitz quotients of subsets of a Hilbert space but which do not bi-Lipschitz embed into a Hilbert space.

Quantitative versions of problem 2 might be interesting.

(3) Estimate, in terms of λ and N, the largest Euclidean distortion of an N-point metric space which is a λ-Lipschitz quotient of a subset of a Hilbert space.
Recall the definition of δ-affine localization:

f admits δ-affine localization if for every $\varepsilon > 0$ and every ball $B \subset X$ there is a ball $B_r \subset B$ and an affine function $L : X \to Y$ so that

$$\|f(x) - Lx\| \leq \varepsilon r, \quad x \in B_r$$

and $r \geq \delta(\varepsilon) \text{radius}(B)$.

(4) Is there an analogue of δ-affine localization for Lipschitz mappings between other classes of metric spaces? Maybe metric groups? Are there conditions which will guarantee that a pair (X, Y) has the analogue of UAAP?