Decision Tree Construction

Johannes Gehrke

Cornell University
johannes@cs.cornell.edu
http://www.cs.cornell.edu/johannes

Overview

@ Introduction

@ Construction of decision trees

@ Top-down decision tree construction schema,
split selection, pruning, data access, missing
values

@ Evaluation
@ Comparison with other methods

@ Predictive accuracy, complexity, training time,
selection bias

Classification Example

@ Example training database | Age | Car | Class

® Two predictor attributes: 20 Yes
Age and Car-type (Sport, 30 Yes
Minivan and Truck) 25 No
® Age is ordered, Car-type is 30 Yes

categorical attribute

40 Y
o Class label indicates 20 S
whether person bought
product 30 Yes
® Dependent attribute is 25 Yes
categorical 40 Yes

NN RIS
z
o

20

Regression Example

@ Example training database Age | Car | Spent
@ Two predictor attributes: 20 | M | 8200
Age and Car-type (Sport, 30 | M | $150
Minivan and Truck) 25 T $300
@ Spent indicates how much 301 S $220
person spent during a recent 40 S $400
visit to the web site 20 T $80
@ Dependent attribute is 30 | M | $100
numerical 25 | M $125
40 M $500
20 S $420

Types of Variables

® Numerical Domain is ordered and can be
represented on the real line (e.g., age, income)

® Nominal or categorical Domain is a finite set
without any natural ordering (e.g., occupation,
marital status, race)

® Ordinal Domain is ordered, but absolute
differences between values is unknown (e.g.,
preference scale, severity of an injury)

Definitions

@ Random variables X;, ..., X, (predictor variables)
and Y (dependent variable)

@ X; has domain dom(X;), Y has domain dom(Y)

@ P is a probability distribution on
dom(X,) x ... x dom(X,) x dom(Y)
Training database D is a random sample from P

@ A predictord is a function
d: dom(X;) ... dom(X,) > dom(Y)

Classification Problem

e If Y is categorical, the problem is a classification
problem, and we use C instead of Y.
|dom(C)| = J.

o Cis called the class /abel, d is called a classifier.

@ Take r be record randomly drawn from P.
Define the misclassification rate of d:
RT(d,P) = P(d(r.Xy, ..., r.X) !=1.C)

@ Problem definition: Given dataset D that is a
random sample from probability distribution P,
find classifier d such that RT(d,P) is minimized.

Regression Problem

e If Y is numerical, the problem is a regression
problem.

@ Y is called the dependent variable, d is called a
regression function.

@ Take r be record randomly drawn from P.
Define mean squared error rate of d:
RT(d,P) = E(r.Y - d(r.X, ..., r-X,))?

® Problem definition: Given dataset D that is a
random sample from probability distribution P,
find regression function d such that RT(d,P) is
minimized.

Goals and Requirements

Goals:

@ To produce an accurate classifier/regression
function

@ To understand the structure of the problem
Requirements on the model:

@ High accuracy

e Understandable by humans, interpretable

@ Fast construction for very large training
databases

What are Decision Trees?

@ Minivary

YES
Sports, YES
Truck
NO
0 30 60 Age

Decision Trees

® A decision tree T encodes d (a classifier or
regression function) in form of a tree.

® A node t in T without children is called a

leaf node. Otherwise t is called an internal/
node.

Internal Nodes

@ Each internal node has an associated
splitting predicate. Most common are
binary predicates.

Example predicates:

o Age <=20

@ Profession in {student, teacher}

@ 5000*Age + 3*Salary — 10000 > 0

Internal Nodes: Splitting Predicates

@ Binary Univariate splits:
@ Numerical or ordered X: X <= ¢, ¢ in dom(X)
@ Categorical X: X in A, A subset dom(X)

@ Binary Multivariate splits:

e Linear combination split on numerical
variables:
ZaX <=c

e k-ary (k>2) splits analogous

Leaf Nodes

Consider leaf node t

o Classification problem: Node t is labeled
with one class label c in dom(C)
@ Regression problem: Two choices
@ Piecewise constant model:
t is labeled with a constant y in dom(Y).
@ Piecewise linear model:
t is labeled with a linear model
Y =y, + ZaX

Example

Encoded classifier:
If (age<30 and
carType=Minivan)
<30 >=30 Then YES

If (age <30 and

(carType=Sports or
carType=Truck))
Miniva Spouts, Truck Then NO
If (age >= 30)

‘ YES ‘ ‘ NO ‘ Then NO

Evaluation of Misclassification Error

Problem:

@ In order to quantify the quality of a
classifier d, we need to know its
misclassification rate RT(d,P).

@ But unless we know P, RT(d,P) is
unknown.

@ Thus we need to estimate RT(d,P) as
good as possible.

Resubstitution Estimate

The Resubstitution estimate R(d,D) estimates
RT(d,P) of a classifier d using D:

@ Let D be the training database with N records.

@ R(d,D) = 1/N Z I(d(r.X) !'=r.C))

@ Intuition: R(d,D) is the proportion of training
records that is misclassified by d

® Problem with resubstitution estimate:
Overly optimistic; classifiers that overfit the

training dataset will have very low resubstitution
error.

Test Sample Estimate

o Divide D into D, and D,
@ Use D, to construct the classifier d

® Then use resubstitution estimate R(d,D,)
to calculate the estimated misclassification
error of d

e Unbiased and efficient, but removes D,
from training dataset D

V-fold Cross Validation

Procedure:

@ Construct classifier d from D

@ Partition D into V datasets Dy, ..., Dy

@ Construct classifier d; using D \ D

@ Calculate the estimated misclassification error
R(d;,D;) of d, using test sample D;

Final misclassification estimate:

@ Weighted combination of individual
misclassification errors:
R(d,D) = 1/V Z R(d; D)

Cross-Validation: Example

J - AR

88> £«

288 » A0
SO0 s,

Cross-Validation

@ Misclassification estimate obtained through
cross-validation is usually nearly unbiased

@ Costly computation (we need to compute d, and
d,, ..., dy); computation of d; is nearly as
expensive as computation of d

@ Preferred method to estimate quality of learning
algorithms in the machine learning literature

Overview

@ Introduction
@ Construction of decision trees
® Top-down decision tree construction schema
@ Split selection
@ Pruning
@ Data access
® Missing values
e Evaluation

Decision Tree Construction

@ Top-down tree construction schema:

@ Examine training database and find best
splitting predicate for the root node

@ Partition training database
® Recurse on each child node

Top-Down Tree Construction

BuildTree(Node ¢, Training database 5,
Split Selection Method S)

(1) Apply Sto Dto find splitting criterion
(2) if (tis not a leaf node)

(3) Create children nodes of ¢

(4) Partition Dinto children partitions
(5) Recurse on each partition

(6) endif

Decision Tree Construction

@ Three algorithmic components:

@ Split selection (CART, C4.5, QUEST, CHAID,
CRUISE, ...)

@ Pruning (direct stopping rule, test dataset
pruning, cost-complexity pruning, statistical
tests, bootstrapping)

@ Data access (CLOUDS, SLIQ, SPRINT,
RainForest, BOAT, UnPivot operator)

Split Selection Method

@ Numerical or ordered attributes: Find a
split point that separates the (two) classes

e o o oo oo
| 000000 |0 (0000000
I |\ | 1
Age
30 35 8

(Yes: ® No:°®)

Split Selection Method (Contd.)

@ Categorical attributes: How to group?

Sport: o8 Truck:% o Minivan: ¢ ‘e
(Sport, Truck) - (Minivan) 8e’s ‘e
(Sport) - (Truck, Minivan) e2' ool e’

(Sport, Minivan) --- (Truck) 8% ¢ ° 00

Pruning Method

@ For a tree T, the misclassification rate R(T,P)
and the mean-squared error rate R(T,P) depend
on P, but not on D.

@ The goal is to do well on records randomly
drawn from P, not to do well on the records in D
e If the tree is too large, it overfits D and does

not model P. The pruning method selects the
tree of the right size.

Data Access Method

@ Recent development: Very large training
databases, both in-memory and on
secondary storage

@ Goal: Fast, efficient, and scalable decision
tree construction, using the complete
training database.

Overview

@ Introduction

@ Construction of decision trees
@ Top-down decision tree construction schema
o Split selection
® Pruning
@ Data access
@ Missing values

@ Evaluation

Split Selection Methods

@ Multitude of split selection methods in the
literature
@ In this tutorial:
® CART
® QUEST
e CHAID

Split Selection Methods: CART

@ Classification And Regression Trees
(Breiman, Friedman, Ohlson, Stone, 1984;
considered “the” reference on decision tree
construction)

@ Commercial version sold by Salford Systems
(www.salford-systems.com)

@ Many other, slightly modified implementations
exist (e.g., IBM Intelligent Miner implements the
CART split selection method)

CART Split Selection Method

Motivation: We need a way to choose
quantitatively between different splitting
predicates
o Idea: Quantify the impurity of a node
@ Method: Select splitting predicate that

generates children nodes with minimum

impurity from a space of possible splitting
predicates

Intuition: Impurity Function

X1 | X2 | Class 0%,50%)
1 1 Yes
1 2 Yes ‘ Yes ‘ ‘ No ‘
1 2 Yes
T 12 1 Yes 83%,17%) (0%,100%)
1 2 Yes
1| 1] No (50%,50%)
2 1 No
2 1 No No Yes
2 2 No
2 [2 | No (25%,75%) (66%,33%)

Impurity Function

@ Let p(j|t) be the proportion of class j training
records at node t

@ Node impurity measure at node t:
i(t) = phi(p(11t), ..., pAIL))

@ phi is symmetric

@ Maximum value at arguments (3%, ..., J'1)
(maximum impurity)

e phi(1,0,...,0) = ... =phi(0,...,0,1) =0
(node has records of only one class; “pure”
node)

Example

® Root node t:
p(1|t)=0.5; p(2|t)=0.5

Left child node t: o =m0
P(1]t)=0.83; p(2|t)=-.17 0%»50 %)
® Impurity of root node:

phi(0.5,0.5) ‘ Yes ‘ ‘ No ‘
® Impurity of left child
node: (83%,17%) (0%,100%)

phi(0.83,0.17)

® Impurity of right child
node:
phi(0.0,1.0)

Goodness of a Split

Consider node t with impurity phi(t)

The reduction in impurity through splitting
predicate s (t splits into children nodes t;
with impurity phi(t,) and t; with impurity
phi(ty)) is:

4,,(s,t) = phi(t) — p, phi(t,) — pr phi(tz)

Example (Contd.)

@ Impurity of root node:

phi(0.5,0.5)
@ Impurity of whole tree: 0%'50%)
0.6* phi(0.83,0.17)
+ 0.4 * phi(0,1) ‘ Yes ‘ No ‘
@ Impurity reduction:
phi(0.5,0.5)

- 0.6* phi(0.83,0.17)
- 0.4 * phi(0,1)

(83%,17%) (0%,100%)

Error Reduction as Impurity Function

@ Possible impurity 0% 50%)
function:

Resubstitution error Yes ‘ ‘ No
R(T,D).
(83 %,17%) (0%,100 4,)
® Example:
R(no tree, D) = 0.5 o e
R(T,,D) = 0.6%0.17 504 50%)
R(T,,D) =

0.4%0.25 + 0.6%0.33 NO \
(25%,75%) (66%,33%)

Yes ‘

Problems with Resubstitution Error

@ Obvious problem:
There are situations

where no split can @ (80%,20%)
decrease impurity

@ Example: ‘ Yos ‘ ‘ Yes ‘
R(no tree, D) = 0.2
R(T,,D) 6: (83%,17%) 4: (75%,25%)
=0.6*0.17+0.4*0.25
=0.2

Problems with Resubstitution Error

@ More subtle problem:

‘Yes ‘ ‘No ‘ ‘No ‘ ‘Yes ‘

4 (75%,25%) 4 (25%,75%) 6:(33%,66%) 2: (100%,0%)

Problems with Resubstitution Error

Root node: n records, q of class 1
Left child node: n1 records, q' of class 1

Right child node: n2 records, (g-q") of class 1,
ni+n2 =n

(qr (n-q)

‘ Yes ‘ ‘Yes ‘

nl: (q'/nl, (nl-q’)/n1) n2:((q-q")/n2, (n2-(4-q)/n2)

Problems with Resubstitution Error

Tree structure:
Root node: n records (g/n, (n-q))
Left child: n1 records (q'/n1, (n1-q")/n1)
Right child: n2 records ((g-q")/n2, (n2-q’)/n2)
Impurity before split:
Error: g/n
Impurity after split:
Left child: n1/n * q’/n1 = g/n
Right child: n2/n * (g-q")/n2 = (g-q")/n
Total error: q'/n + (g-q")/n = g/n

Problems with Resubstitution Error

Heart of the problem:

Assume two classes:
phi(p(1[t), p(2]t)) = phi(p(1[t), 1-p(1]t))
= phi (p(1]t))

Resubstitution errror has the following
property:
phi(p1 + p2) = phi(p1)+phi(p2)

Example: Only Root Node

 phi 8: (50%,50%)

v

Example: Split (75,25), (25,75)

o PSS

‘ Yes ‘ ‘ No ‘

4: (75%,25%) 4: (25%,75%)

v

Example: Split (33,66), (100,0)

‘No ‘ ‘Yes ‘

6: (33%,66%) 2: (100%,0%)

Remedy: Concavity

Use impurity functions that are concave:
phi"< 0

Example impurity functions
@ Entropy:

phi(t) = - Z p(lt) log(p(It))
@ Gini index:

phi(t) = Z p(j|t)*

Example Split With Concave Phi

‘ No ‘ ‘ Yes ‘

%,66%) 2: (100%,0%)

v

Nonnegative Decrease in Impurity

Theorem: Let phi(p, ..., p;) be a strictly concave
function on j=1, ..., J, Ip =1

Then for any split s:
Aphi(S,t) >= 0
With equality if and only if:
pGIt) = pGltz) = pGIL), =1, ...,]

Note: Entropy and gini-index are concave.

CART Univariate Split Selection

@ Use gini-index as impurity function
@ For each numerical or ordered attribute X,
consider all binary splits s of the form
X <=x
where x in dom(X)
@ For each categorical attribute X, consider all
binary splits s of the form
Xin A, where A subset dom(X)
@ At a node t, select split s* such that
Ayri(s*,t) is maximal over all s considered

CART: Shortcut for Categorical Splits

Computational shortcut if |Y|=2.

@ Theorem: Let X be a categorical attribute with
dom(X) = {by, ..., b}, |Y|=2, phi be a concave
function, and let

p(X=b;) <= ... <= p(X=by).
Then the best split is of the form:
Xin {b;, b,, ..., b} for some | < k

@ Benefit: We need only to check k-1 subsets of

dom(X) instead of 2(k1)-1 subsets

CART Multivariate Split Selection

@ For numerical predictor variables, examine
splitting predicates s of the form:
ZaX<=c
with the constraint:

Za’r=1

@ Select splitting predicate s* with

maximum decrease in impurity.

Problems with CART Split Selection

@ Biased towards variables with more splits
(M-category variable has 2M1-1) possible
splits, an M-valued ordered variable has
(M-1) possible splits

@ Computationally expensive for categorical
variables with large domains

Split Selection Methods: QUEST

@ Quick, Unbiased, Efficient, Statistical Tree
(Loh and Shih, Statistica Sinica, 1997)
Freeware, available at www.stat.wisc.edu/~loh
Also implemented in SPSS.

@ Main new ideas:
@ Separate splitting predicate selection into variable
selection and split point selection
@ Use statistical significance tests instead of impurity
function

QUEST Variable Selection

Let B be a selected significance level. Let X;, ..., X|
be numerical predictor variables, and let X, 4,
... X, be categorical predictor variables.

1. Find p-value from ANOVA F-test for each
numerical variable.

2. Find p-value for each X2-test for each
categorical variable.

3. Choose variable X, with overall smallest p-
value py

QUEST Variable Selection

4. Choose X, as splitting variable if p,<B/k (first
Bonferroni correction).

5. Otherwise, find p-values for Levene’s F-test for
each numerical predictor variable. Let X, have
the smallest such p-value py..

6. If p» < B/(k+l), split on X~ (second Bonferroni
correction)

7. Else split on X,

QUEST Split Point Selection

CRIMCOORD transformation of categorical

variables into numerical variables:
1.

Take categorical variable X with domain
dom(x)z{xll ey XI}

For each record in the training database, create
vector (vy, ..., V) where v; = I(X=Xx;)

Find principal components of set of vectors V
Project the dimensionality-reduced data onto the
largest discriminant coordinate dx;

Replace X with numeral dx; in the rest of the
algorithm

CRIMCOORDSs: Examples

® Values(X|Y=1) = {4c,,c,,5¢;},
values(X|Y=2) = {2¢,, 2¢,, 6¢5}
dx; =1, dx, = -1, dx3 = -0.3

® Values(X|Y=1) = {5¢,,5¢;},
values(X|Y=2) = {5c,, 5¢;}
dx; =1,dx,=0,dx; =1

® Values(X|Y=1) = {5c,,5¢3},
values(X|Y=2) = {5c,, ¢,, 5¢3}
dx; =1,dx, =-1,dx3 =1

Why CRIMCOORD Transformation?

Advantages

@ Avoid exponential subset search from
CART

@ Each dx; has the form Z b; I(X=x;) for
some by, ..., b, thus there is a 1-1

correspondence between subsets of X and
a dx;

QUEST Split Point Selection

@ Assume X is the selected variable (either
numerical, or categorical transformed to
CRIMCOORDS)

@ Group J>2 classes into two superclasses

@ Now problem is reduced to one-dimensional
two-class problem
@ Use exhaustive search for the best split point (like in

CART)
) Ul_sde ?uadratic discriminant analysis (QDA, see next
sliae

QUEST Split Point Selection: QDA

e Let x;, X, and s,?, s,? the means and
variances for the two superclasses

@ Make normal distribution assumption, and
find intersections of the two normal
distributions N(x,,s,2) and N(x,,S,?)

@ QDA splits the X-axis into three intervals

@ Select as split point the root that is closer
to the sample means

Illustration: QDA Splits

—N(0,1) — N(2,2.25)

0.5

0.4+

0.3 4

0.2+

QUEST Linear Combination Splits

e Transform all categorical variables to
CRIMCOORDS

@ Apply PCA to the correlation matrix of the data

@ Drop the smallest principal components, and
project the remaining components onto the
largest CRIMCOORD

@ Group J>2 classes into two superclasses

@ Find split on largest CRIMCOORD using ES or
QDA

Key Differences CART/QUEST

Feature QUEST CART
Variable selection F and X2 tests |ES
Split point selection QDA or ES ES
Categorical variables CRIMCOORDS |ES

Monotone transformations for | Not invariant | Invariant
numerical variables

Ordinal Variables No Yes

Overview

@ Introduction

@ Construction of Decision Trees
@ Top-down decision tree construction schema
@ Split Selection
o Pruning
@ Data Access
@ Missing Values
@ Evaluation

Pruning Methods

@ Test dataset pruning

@ Direct stopping rule

@ Cost-complexity pruning

@ MDL pruning

@ Pruning by randomization testing

Top-Down and Bottom-Up Pruning

Two classes of methods:

@ Top-down pruning: Stop growth of the
tree at the right size. Need a statistic that
indicates when to stop growing a subtree.

@ Bottom-up pruning: Grow an overly large

tree and then chop off subtrees that
“overfit” the training data.

Stopping Policies

A stopping policy indicates when further growth of
the tree at a node t is counterproductive.

@ All records are of the same class
@ The attribute values of all records are identical
@ All records have missing values

@ At most one class has a number of records
larger than a user-specified number
@ All records go to the same child node if t is split

(only possible with some split selection
methods)

Test Dataset Pruning

@ Use an independent test sample D’ to
estimate the misclassification cost using
the resubstitution estimate R(T,D’) at
each node

@ Select the subtree T’ of T with the
smallest expected cost

Test Dataset Pruning Example

Test set:
(50%,50%)
X1 | X2 | Class
1 1 Yes
1 [2| Yes | (83%,17%) \
1 2 Yes
1 | 2] Yes ‘ (0%,100%)
1 1 Yes ‘ No ‘ Yes ‘
1 2 No
2T 11 No (100%,0%) (75%,25%)
2 1 No . o . . .
> T2 No Only root: 10% misclassification
2 | 2] No Full tree: 30% misclassification

Reduced Error Pruning

(Quinlan, C4.5, 1993)

@ Assume observed misclassification rate at
anodeisp

@ Replace p (pessimistically) with the upper
75% confidence bound p’, assuming a
binomial distribution

@ Then use p’ to estimate error rate of the
node

Cost Complexity Pruning

(Breiman, Friedman, Olshen, Stone, 1984)

Some more tree notation
et:nodeintree T

@ leaf(T): set of leaf nodes of T

@ |leaf(T)|: number of leaf nodes of T

® T.: subtree of T rooted at t

o {t}: subtree of T, containing only node t

Notation: Example

leaf(T) = {t1,t2,t3}
|leaf(T)|=3
Tree rooted

at node t: T,

Tree consisting
of only node t: {t}

leaf(T,)={t1,t2}
leaf({t})={t}

Cost-Complexity Pruning

@ Test dataset pruning is the ideal case, if we
have a large test dataset. But:
® We might not have a large test dataset
@ We want to use all available records for tree

construction

e If we do not have a test dataset, we do not
obtain “honest” classification error estimates

@ Remember cross-validation: Re-use training
dataset in a clever way to estimate the
classification error.

Cost-Complexity Pruning

1. [* cross-validation step */
Construct tree T using D
Partition D into V subsets D, ..., Dy
3. for (i=1; i<=V; i+4)
Construct tree T, from (D \ D))
Use D; to calculate the estimate R(T;, D \ D))
endfor
4, [* estimation step */
Calculate R(T,D) from R(T;, D \ D))

Cross-Validation Step

3 - ff@

2808~

988 - g;oq
H088> S

Cost-Complexity Pruning

@ Problem: How can we relate the
misclassification error of the CV-trees to the
misclassification error of the large tree?

@ Idea: Use a parameter that has the same
meaning over different trees, and relate trees
with similar parameter settings.

@ Such a parameter is the cost-complexity of the
tree.

Cost-Complexity Pruning

@ Cost complexity of a tree T:
Rapha(T) = R(T) + alpha [leaf(T)|

® For each A, there is a tree that minimizes the
cost complexity:
@ alpha = 0: full tree

@ alpha = infinity: only root node &

alpha=0.4

]

alpha=0.6
alpha=0.0 alpha=0.25

Cost-Complexity Pruning

@ When should we prune the subtree rooted at t?
® R,;na({t}) = R(t) + alpha
® Ropna(T) = R(Ty) + alpha |leaf(Ty)|
o Define
g(t) = (R(V)-R(TY) / (lleaf(Ty)|-1)
@ Each node has a critical value g(t):
@ Alpha < g(t): leave subtree T, rooted at t
@ Alpha >= g(t): prune subtree rooted at t to {t}
® For each alpha we obtain a unique minimum
cost-complexity tree.

Example Revisited

a8 8

O<alpha<=0.2 0.2<alpha<=0.3

L]
alpha>=0.45

0.3<alpha<0.45

Cost Complexity Pruning

1. LetT!>T2> .. > {t} be the nested cost-
complexity sequence of subtrees of T rooted
at t.
Let alpha; < ... < alpha, be the sequence of
associated critical values of alpha. Define
alpha,.=squareroot(alpha, * alpha,,)

2. Let T, be the tree grown from D \ D,

3. Let Ti(alpha,,) be the minimal cost-complexity
tree for alpha,

Cost Complexity Pruning

4. Let R'(T;)(alpha)) be the misclassification
cost of T,(alpha,,) based on D,

5. Define the V-fold cross-validation
misclassification estimate as follows:
R*(TX) = 1/V Z, R(T,(alpha,))

6. Select the subtree with the smallest
estimated CV error

k-SE Rule

@ Let T* be the subtree of T that minimizes the
misclassification error R(T,) over all k
@ But R(T)) is only an estimate:
@ Estimate the estimated standard error SE(R(T*)) of
R(T*)
@ Let T** be the smallest tree such that
R(T**) <= R(T*) + k*SE(R(T*)); use T** instead of
T*
@ Intuition: A smaller tree is easier to understand.

Cost Complexity Pruning

Advantages:

@ No independent test dataset necessary

@ Gives estimate of misclassification error, and
chooses tree that minimizes this error

Disadvantages:

@ Originally devised for small datasets; is it still
necessary for large datasets?

@ Computationally very expensive for large

datasets (need to grow V trees from nearly all
the data)

Pruning Using the MDL Principle

(Mehta, Rissanen, Agrawal, KDD 1996)
Also used before by Fayyad, Quinlan, and others.

@ MDL: Minimum Description Length Principle

@ Idea: Think of the decision tree as encoding the
class labels of the records in the training
database

@ MDL Principle: The best tree is the tree that
encodes the records using the fewest bits

How To Encode a Node

Given a node t, we need to encode the following:

@ Nodetype: One bit to encode the type of each node
(leaf or internal node)

For an internal node:
@ Cost(P(t)): The cost of encoding the splitting
predicate P(t) at node t
For a leaf node:
® n*E(t): The cost of encoding the records in leaf node

t with n records from the training database (E(t) is
the entropy of t)

How To Encode a Tree

Recursive definition of the minimal cost of a node:
® Node t is a leaf node:

cost(t)= n*E(t)
@ Node t is an internal node with children nodes t,

and t,. Choice: Either make t a leaf node, or
take the best subtrees, whatever is cheaper:

cost(t) =
min(n*E(t), 1+cost(P(t))+cost(t,)+cost(t,))

How to Prune

1. Construct decision tree to its maximum
size

2. Compute the MDL cost for each node of
the tree bottom-up

3. Prune the tree bottom-up:
If cost(t)=n*E(t), make t a leaf node.
Resulting tree is the final tree output by
the pruning algorithm.

Performance Improvements: PUBLIC

(Shim and Rastogi, VLDB 1998)

@ MDL bottom-up pruning requires construction of
a complete tree before the bottom-up pruning
can start

@ Idea: Prune the tree during (not after) the tree
construction phase

@ Why is this possible?

@ Calculate a lower bound on cost(t) and compare it
with n*E(t)

PUBLIC Lower Bound Theorem

@ Theorem: Consider a classification problem with
k predictor attributes and J classes. Let T, be a
subtree with s internal nodes, rooted at node t,
let n, be the number of records with class label i.
Then

cost(T,) >= 2*s+1+s*log k + Z n;

® Lower bound on cost(T,) is thus the minimum
of:
® n*E+1 (t becomes a leaf node)
® 2*s+1+s*log k + X n; (subtree at t remains)

Large Datasets Lead to Large Trees

@ Oates and Jensen (KDD 1998)

@ Problem: Constant probability distribution P,
datasets D, D,, ..., D, with
[Dy| < IDy| < ... <Dy
[Dyl = ¢ [Dsyl = ... =< |Dy]

® Observation: Trees grow
ITy| < ITy] <. < [Tyl
[Tl =" [Tal = .. = X |Tyl

@ But: No gain in accuracy due to larger trees
R(Ty,Dy) ~ R(T,D;) ~ ... ~ R(Ty, Dy)

Pruning By Randomization Testing

@ Reduce pruning decision at each node to
a hypothesis test
@ Generate empirical distribution of the

hypothesis under the null hypothesis for a
node n:

Randomization Pruning

Node n with subtree T(n) and pruning statistic
S(n)
For (i=0; i<K; i++)
1. Randomize class labels of the data at n
2. Build and prune a tree rooted at n
3. Calculate pruning statistic S,(n)
Compare S(n) to empirical distribution of S,(n) to
estimate significance of S(n)
If S(n) is not significant enough compared to a
significance level alpha, then prune T(n) to n

Overview

@ Introduction
@ Construction of Decision Trees
@ Top-down decision tree construction schema
@ Split Selection
@ Pruning
e Data Access
@ Missing Values
@ Evaluation

SLIQ

Shafer, Agrawal, Mehta (EDBT 1996)

@ Motivation:
@ Scalable data access method for CART
@ To find the best split we need to evaluate the
impurity function at all possible split points for each
numerical attribute, at each node of the tree
@ Idea: Avoids re-sorting at each node of the three
through pre-sorting and maintenance of sort orders

SLIQ: Pre-Sorting

Age | Car | Class Age | Ind Ind | Class | Leaf
20 | M | Yes 20 1 1 Yes 1
30 | M Yes 20 6 2 Yes 1
25 | T | No 20 | 10 3 No 1
30 S Yes 25 3 4 Yes 1
40 | S Yes 25 8 5 Yes 1
20 | T No 30 2 6 No 1
30 | M | Yes 30 4 7 Yes 1
25 | M | Yes 30 7 8 Yes 1
40 | M | Yes 40 5 9 Yes 1
20] S No 40 9 10 No 1
SLIQ: Evaluation of Splits
Age | Ind Ind | Class [Leaf Nodez T vYes [No
20 1 1 Yes 2
Left 2 0
20 6 2 Yes 2 Right 3 2
20 | 10 3 No 2
25 3 4 Yes 3
75 3 5 Yes 3 Node3 | Yes [No
30 D 6 No 2 Left 0 1
30 7 8 Yes 2
40 5 9 Yes 2
40 9 10 No 3
SLIQ: Splitting of a Node
Age | Ind Ind | Class [Leaf
20 1 1 Yes 4
20| 6 2 | Yes | 5 1
20 | 10 3 No 5 /N
2 3
25 | 3 4 | Yes | 7 A
25 3 5 Yes 7 4 5 6 7
30 D 6 No 4
30 4 7 Yes 7
30 7 8 Yes 7
40 5 9 Yes 7
40 9 10 No 6

SLIQ: Summary

@ Uses vertical partitioning to avoid re-
sorting

@ Main-memory resident data structure with
schema (class label, leaf node index)
Very likely to fit in-memory for nearly all
training databases

SPRINT

Shafer, Agrawal, Mehta (VLDB 1996)

@ Motivation:
@ Scalable data access method for CART

@ Improvement over SLIQ to avoid main-
memory data structure

SPRINT: Algorithm Overview

e Create vertical partitions called attribute lists
for each attribute

® Pre-sort the attribute lists

Recursive tree construction:

1. Scan all attribute lists at node t to find the
best split

2. Partition current attribute lists over children
nodes while maintaining sort orders

3. Recurse

SPRINT Attribute Lists

Age | Car | Class Age | Class | Ind Car | Class | Ind
20 | M | Yes 20 | Yes 1 M | Yes 1
30 | M | Yes 20 | No 6 M | Yes 2
25| T No 20 | No 10 T | No 3
30 | S Yes 25 No 3 S Yes 4
40 | S Yes 25 | Yes 8 S Yes 5
20 | T No 30 | Yes 2 T No 6
30 | M | Yes 30 | Yes 4 M | Yes 7
25 | M | Yes 30 | Yes 7 M | Yes 8
40 | M | Yes 40 | Yes 5 M| Yes [9
20 | S No 40 [Yes 9 S No | 10

SPRINT: Evaluation of Splits

Age | Class | Ind
;8 \I:Ieos é Nodel | Yes | No
20 | No | 10 Left | 1 |2
25 | No 3 Right 6 1
25 Yes 8
30 Yes 2
30 Yes 4
30 Yes 7
40 | Yes 5
40 | Yes 9

SPRINT: Splitting of a Node

1. Scan all attribute lists to find the best
split

2. Partition the attribute list of the splitting
attribute X

3. For each attribute X; = X

Perform the partitioning step of a hash-join
between the attribute list of X and the
attribute list of X;

SPRINT: Hash-Join Partitioning

Age | Class | Ind

20 Yes 1 ——
20 | No 6 |Right Child
20 No 10 | Right Child
25 No 3

25 Yes 8

30 Yes 2

30 Yes 4

30 Yes 7

40 | Yes 5 | R

40 Yes 9

Class

z|z|z|z|z|E

O |co|[qfto]|—

SPRINT: Summary

@ Scalable data access method for CART

split selection method

@ Completely scalable, can be (and has
been) implemented “inside” a database

system

@ Hash-join partitioning step expensive
(each attribute, at each node of the tree)

RainForest: Motivation

(Gehrke, Ramakrishnan, Ganti,
VLDB 1998)

® Example training database

@ Two predictor attributes:
Age and Car-type (Sport, Minivan
and Truck)

@ Age is ordered, Car-type is
categorical attribute

@ Class label indicates
whether person bought
product

Age | Car | Class
20 | M Yes
30 | M | Yes
25| T No
30 S Yes
40 S Yes
20 T No
30 | M | Yes
25 | M Yes
40 | M Yes
20 | S No

RainForest: AVC-Set

Training Database AVC-Sets

Age | Car | Class Age Yes [No
20 M Yes 20 1 2
30 M Yes 25 1 1
25 T No 30 3 0
30 S Yes 40 2 0
40 N Yes
20 T | No Car Yes | No
30 M Yes Sport 2 1
25 | M | Yes Truck 0 | 2
40 M Yes Minivan 5 0
20 S No

Refined RainForest Top-Down Schema

BuildTree(Node 7, Training database 5,
Split Selection Method S)

[(1) Apply Sto Dto find splitting criterion]
(1a) for each predictor attribute X

(1b) Call SfindSplit(AVC-set of X)

(1c) endfor

(1d) S.chooseBest();

(2) if (nis not a leaf node) ...

S: C4.5, CART, CHAID, FACT, ID3, GID3, QUEST, etc.

RainForest Data Access Method

Assume datapartition at a node is D. Then the
following steps are carried out:

1. Construct AVC-group of the node
2. Choose splitting attribute and splitting predicate
3. Partition D across the children

RainForest Summary

@ Works best if the AVC-group of the root
node fits in-memory

@ Feasible (but slow) if each individual AVC-
set of the root node fits in-memory

e If training database is very large, use
hybrid between RainForest and SPRINT

@ Scales broad class of split selection
methods

Overview

@ Introduction

@ Construction of Decision Trees
@ Top-down decision tree construction schema
@ Split Selection
@ Pruning
o Data Access
e Missing Values
@ Evaluation

Missing Values

@ What is the problem?

@ During computation of the splitting predicate,
we can selectively ignore records with missing
values (note that this has some problems)

@ But if a record r misses the value of the
variable in the splitting attribute, r can not
participate further in tree construction

Algorithms for missing values address this
problem.

Mean and Mode Imputation

Assume record r has missing value r.X, and
splitting variable is X.
@ Simplest algorithm:

e If X is numerical (categorical), impute the
overall mean (mode)

e Improved algorithm:

e If X is numerical (categorical), impute the
mean(X|t.C) (the mode(X|t.C))

Surrogate Splits (CART)

Assume record r has missing value r.X, and
splitting predicate is Py.

@ Idea: Find splitting predicate Q. involving
another variable X' = X that is most similar to
Py.

@ Similarity sim(Q,P|D) between splits Q and P:
Sim(Q,P|D) = [{r in D: P(r) and Q(r)}|/|D|

e 0 <=sim(Q,PID) <=1

e Sim(P,P) =1

Surrogate Splits: Example

Consider splitting predicate Xl X2 | Class
X1 <=1. L | 1] Yes
sim((X1 <= 1), I | 1] Yes
(X2 <=1)|D) = 1 1 | Yes
(3+4)/10 1 2 Yes
Sim((X1 <= 1), 1 2 | Yes
(X2 <= 2)|D) = 1 | 2] No
(6+3)/10 2 | 2| No
(X2 <= 2) is the preferred 2 3 No
surrogate split. 2 3 No
2 3 No

Overview

@ Introduction
@ Construction of decision trees
@ Evaluation

o Predictive accuracy, complexity,
training time, selection bias

Choice of Classification Algorithm?

@ Example study: (Lim, Loh, and Shih, Machine
Learning 2000)
@ 33 classification algorithms
® 16 (small) data sets (UC Irvine ML Repository)
@ Each algorithm applied to each data set
@ Experimental measurements:
@ Classification accuracy
o Computational speed
@ Classifier complexity

Classification Algorithms

@ Tree-structure classifiers:

@ IND, S-Plus Trees, C4.5, FACT, QUEST, CART,
OC1, LMDT, CAL5, T1

@ Statistical methods:

o LDA, QDA, NN, LOG, FDA, PDA, MDA, POL
@ Neural networks:

e LVQ, RBF

Experimental Details

@ 16 primary data sets, created 16 more
data sets by adding noise

@ Converted categorical predictor variables
to 0-1 dummy variables if necessary

@ Error rates for 6 data sets estimated from
supplied test sets, 10-fold cross-validation
used for the other data sets

Ranking by Mean Error Rate

Rank Algorithm Mean Error Time

1 Polyclass 0.195 3 hours
2 Quest Multivariate 0.202 4 min

3 Logistic Regression 0.204 4 min
6 LDA 0.208 10s

8 IND CART 0.215 47 s

12 C4.5 Rules 0.220 20s

16 Quest Univariate 0.221 40 s

Other Results

@ Number of leaves for tree-based
classifiers varied widely (median number
of leaves between 5 and 32 (removing
some outliers))

@ Mean misclassification rates for top 26
algorithms are not statistically significantly
different, bottom 7 algorithms have
significantly lower error rates

Problem: Variable Selection Bias

@ Exhaustive search is biased towards variables
with more splits (M-category variable has 2M-1-
1) possible splits, an M-valued ordered variable
has (M-1) possible splits

@ ES is biased towards variables with more
missing values

@ This is a serious problem, since users want to
interpret the tree!

Variable Selection Bias: Null Case

X Dist. k

X; |N@©,21)] .41 | 25 | .12 | .05
X, |EQO,1)] 42 | 26 | 12 | .05
X; | U{4} | .04 | 02 | .01 | .00
Xs | 23| .02 | 01 | .01 | .00
Xs | ({k} | .11 | 46 | .74 | .90

Example: Teaching Assistant Data

@ 151 teaching assistant evaluations over five
semesters
@ Response is TA evaluation score (above or
below average)
@ Predictor Variables:
@ English (TA is native English speaker)
@ Course (26 categories)
@ Instructor (25 categories)
@ Session (regular or summer session)
® NumberResp (number of respondents)

Statistical Significance of Predictors

Predictor P-value
English 0.005
Session 0.010
Course 0.019
Instructor 0.171
NumberResp 0.992

TA-Data: Decision Tree Results

@ Exhaustive search split selection method:
o First split is on Course
@ One of the splits on the second level is on
Instructor

@ Less biased split selection method
(QUEST): Splits on English

Bias in Split Selection for ES

Age | Yes | No

Assume: No correlation 20 15] 15
with the class label. 25 5115

30 15115

® Question: Should we 40 15| 15
choose Age or Car?

@ Answer: We should Car | Yes | No
choose both of them Sport | 20 | 20
equally likely! Truck | 20 | 20

Minivan | 20 | 20

Formal Definition of the Bias

@ Bias: “0dds of choosing X; and X, as split
variable when neither X, nor X, is correlated
with the class label”

e Formally:
Bias(X,X;) = Logo(P(X1,X)/(1-P(X1,X5)),
P(X,X,): probability of choosing variable X; over X,

We would like: Bias(X;,X;) = 0 in the Null Case

Formal Definition of the Bias (Contd.)

Car Yes | No

@ Example: Synthetic Carl

data with two Ca2

categorical predictor

variables Car3

® X;: 10 categories

@ X,: 2 categories Carl0
@ For each category:

Same probability of State | Yes | No

choosing “Yes” (no CA

correlation) NY
Evidence of the Bias

- Gini Entropy

Gain Ratio

One Explanation

Theorem: (Expected Value of the Gini Gain)
Assume:

® Two classlabels

@ n: number of categories

@ N: number of records

@ pl: probability of having classlabel “Yes”

Then: E(ginigain) = 2p(1-p)*(n-1)/N

Expected ginigain increases linearly with number
of categories!

Bias Correction: Intuition

@ Value of the splitting criteria is biased under
the Null Hypothesis.

@ Idea: Use p-value of the criterion:
Probability that the value of the criterion under
the Null Case is as extreme as the observed
value

Method:
1. Compute criterion (gini, entropy, etc.)
2. Compute p-value
3. Choose splitting variable

Correction Through P-Value

® New p-value criterion:
® Maintains “good” properties of your favorite
splitting criterion
® Theorem: The correction through the p-value is
nearly unbiased.

Computation:
1. Exact (randomization statistic; very expensive to compute)

2. Bootstrapping (Monte Carlo simulations; computationally
expensive; works only for small p-values)

3. Asymptotic approximations (G2 for entropy, Chi2 distribution for
Chi2 test; don’t work well in boundary conditions)

4. Tight approximations (cheap, often work well in practice)

Tight Approximation

@ Experimental evidence
shows that Gamma
distribution approximates
gini-gain very well. . i

® We can calculate: it S L

® Expected gain: o -
E(gain) = 2p(1-p)*(n-1)/N
@ Variance of gain:
Var(gain) = 4p(1-p)/N2[(1-
6p-6p?) * (sum 1/N;—(2n-
1)/N) + 2(n-1)p(1-p)]

Problem: ES and Missing Value

Consider a training database with the following
schema: (Xy, ..., X, C)

@ Assume the projection onto (X;, C) is the
following:

{(1, Classl), (2, Class2), (NULL, Class3), ...,
(NULL, Class;y)}

(X; has missing values except for the first two

records)

@ Exhaustive search will very likely split on X;!

Problem: ES and Missing Value

Consider a training database with the following
schema: (Xy, ..., X, C)

@ Assume the projection onto (X, C) is the
following:

{(1, Classl), (2, Class2), (NULL, Class,3), ...,
(NULL, Class;y)}

(X4 has missing values except for the first two

records)

@ Exhaustive search will very likely split on X;!

Concluding Remarks

@ Many application of decision trees

@ There are many algorithms available for:
@ Split selection
® Pruning
o Handling Missing Values
o Data Access

@ Decision tree construction still active research area
(after 20+ years!)

@ Challenges: Performance, scalability, evolving datasets,
new applications

Questions?

Acknowledgements:
@ Alin Dobra
® Venkatesh Ganti
@ Wei-Yin Loh
® Raghu Ramakrishnan

