Statistical issues at online surveillance

Marianne Frisén
Statistical Research Unit
Göteborg University
Sweden
Outline

• I Inferential framework
• II Demonstration of computer program
• III Complicated problems - examples
Statistical methods to separate important changes from stochastic variation.

Enough information for decision?
Continual observation of a time series,

with the goal of detecting an important change in the underlying process

as soon as possible after it has occurred.

- Monitoring
- Surveillance
- Change-point analysis

- SPC
- Control charts
- Early warnings
- Just in time
Monitoring of health

INDIVIDUALS:

• natural family planning
 • Hormone cycles
• regular health controls
 • pregnancy
• Intensive care
 • fetal heart rate
• surveillance after intervention
 • kidney transplant

POPULATIONS:

• control of epidemic diseases
• surveillance of known risk factors
• detection of new environmental risks
Surveillance

• Repeated measurements
• Repeated decisions
• No fix hypothesis
• Time important
Sources of knowledge

- Quality control
- Stopping rules in probability theory
- Inference
- Medicine
Change in distribution

The First \((\tau-1)\) observations \(x_{\tau-1} = x(1), \ldots, x(\tau-1)\) have density \(f^D\)

The following observations have density \(f^C\)
Timely detection
of a change in a process
from state D to state C
Evaluations

• Quick detection
• Few false alarms

False alarms

• The Average Run Length at no change, $ARL^0 = E(t_A|D)$

• The false alarm probability $P(t_A<\tau)$.
Motivated alarms

- **ARL**\(^1\)** The Average Run Length until detection of a change (that occurred at the same time as the inspection started) \(E(t_A | \tau = 1)\).

- \(ED(t) = E[\max(0, t_A - t) | \tau = t]\)
 - **ARL**\(^1\) = \(ED(1)\)
 - **CED(t) = E[t_A - t | \tau = t, t_A \geq t]\)
- \(ED = E_\tau[ED(\tau)]\)
- Probability of Successful Detection \(PSD(\tau, d) = P(t_A - \tau \leq d | t_A \geq \tau)\).
Predictive value

\[\Pr(\tau \leq t \mid t_A = t) \]

The predictive value reflects the trust you should have in an alarm.
Optimality

• ARL-optimality
• ED-optimality
• Minimax-optimality

ARL Optimality

• Minimal ARL1 for fixed ARL0
• Observe that $\tau=1$
• Consequences demonstrated in

• **Use only with care!**
Utility

• The loss of a false alarm is a function of the time between the alarm and the change point.
• The gain of an alarm is a linear function of the same difference.

\[u(t_A, \tau) = \begin{cases} h(t_A - \tau), & t_A < \tau \\ a_1 \cdot (t_A - \tau) + a_2, & t_A \geq \tau \end{cases} \]

ED Optimality

Minimize expected delay

For a fixed false alarm probability

$P[t_A < \tau]$

Maximizes the utility by Shiryaev
Minimax Optimality

- Minimal expected delay for the worst value of τ
 and for the worst history of observations before τ

Methods

• LR
 – Shiryaev-Roberts
• Shewhart
• EWMA
 – Moving average
• CUSUM
Partial likelihood ratio

- Detection of $\tau = t$
- $C = \{\tau = t\} \quad D = \{\tau > s\}$
- $L(s, t) = \frac{f_{X_s}(x_s \mid \tau = t)}{f_{X_s}(x_s \mid \tau > s)}$
LR

• Full likelihood ratio
 - \(LR(s) = \frac{f_{X_s}(x_s \mid C)}{f_{X_s}(x_s \mid D)} \)
 - \(C = \{\tau \leq s\} \quad D = \{\tau > s\} \)

 - \(LR(s) = \sum_{t=1}^{\zeta} w(s, t) L(s, t) > G_s \)
LR

• Fulfills several optimality criteria e.g.
 • Maximum expected utility

LR

• Alarmrule equivalent to rule with constant limit for the posterior probability
 – if only two states C and D.

• ”The Bayes method”

• Frequentistic inference possible

• Comparison: Hidden Markov Modeling and LR

Shirayev Roberts

- The LR method with a non-informative prior.
- The limit of the LR method when the intensity ν tends to zero.
- Can often be used as an approximation of LR for rather large values of ν

Shewhart

- Alarmstatistic
 \[X(s) = L(s, s) \]
- Alarmlimit
 constant (often \(3\sigma\))
- Alarmrule
 \[t_A = \min\{s: X(s) > 3\sigma\}, \]
EWMA

Alarmstatistic

\[Z_\varepsilon = \lambda \sum_{j=0}^{\varepsilon-1} (1-\lambda)^j \pi(\varepsilon-j) = \lambda (1-\lambda)^\varepsilon \sum_{t=1}^{\varepsilon} (1-\lambda)^{-t} \pi(t) \propto \sum_{t=1}^{\varepsilon} b^t \pi(t) \]

Approximates LR if \(\lambda = 1 - \exp(-\mu^2/2)/(1-\nu) \)

CUSUM

• Alarmrule
 – $\max(L(s, t); t=1, 2,.., s) > G$

• Minimax optimality
Alarm limits
at the second observation
Parameters for optimizing

The **Shewhart** method has **no** parameters.

The **CUSUM** and the **Shiryaev-Roberts** methods have one parameter M to optimize for the size of the shift μ.

The **LR**-method has besides M also the parameter V to optimize for the intensity v.
Similarity

The LR, Shiryaev-Roberts and the CUSUM methods tend to the Shewhart method when the parameter M tends to infinity.

This explains some earlier claims of similarities between some methods. These studies were made for very large values of M.
Predictive value

A constant predicted value makes the same kind of action appropriate both for early and late alarms.

Shewhart - many early alarms. These alarms are often false.

The LR and the Shiryaev-Roberts methods have relatively constant predicted values.