Constructions of Codes with the Locality Property

Alexander Barg

University of Maryland

DIMACS Workshop “Network Coding: The Next 15 years”
Based on joint works with
Itzhak Tamo
Alexey Frolov
Serge Vlăduţ
Sreechakra Goparaju
Robert Calderbank
The code $C \subseteq \mathbb{F}^n$ is locally recoverable with locality r if every symbol can be recovered by accessing some other r symbols in the encoding (recovery set of coordinate i).
(n, k, r) LRC code

Definition (LRC codes)

Code C has locality r if for every $i \in [n]$ there exists a subset $J_i \subset [n]\setminus i$, $|J_i| \leq r$ and a function ϕ_i such that for every codeword $c \in \mathcal{C}$

$$c_i = \phi_i(\{c_j, j \in J_i\})$$

J. Han and L. Lastras-Montano, ISIT 2007;
C. Huang, M. Chen, and J. Li, Symp. Networks App. 2007;
F. Oggier and A. Datta '10;

Linear index codes are duals of linear DS codes on graphs

(Mazumdar '14; Shanmugam-Dimakis '14)
Definition (LRC codes)

Code \mathcal{C} has *locality* r if for every $i \in [n]$ there exists a subset $J_i \subset [n] \setminus i$, $|J_i| \leq r$ and a function ϕ_i such that for every codeword $c \in \mathcal{C}$

$$c_i = \phi_i(\{c_j, j \in J_i\})$$

Examples:

Repetition codes, Single parity-check codes

$[n, r, n - r + 1]$ RS code

Early constructions:

- Prasanth, Kamath, Lalitha, Kumar, ISIT 2012
- Silberstein, Rawat, Koyluoglu Vishwanath, ISIT 2013
- Tamo, Papailiopoulos, Dimakis, ISIT 2013
Outline

- RS-like LRC codes
- Bounds on LRC codes
- LRC codes on curves
- Cyclic LRC codes
RS codes and Evaluation codes

Given a polynomial $f \in \mathbb{F}_q[x]$ and a set $A = \{P_1, \ldots, P_n\} \subset \mathbb{F}_q$ define the map

$$ev_A : f \mapsto (f(P_i), i = 1, \ldots, n)$$

Example: Let $q = 8$, $f(x) = 1 + \alpha x + \alpha x^2$

$$f(x) \mapsto (1, \alpha^4, \alpha^6, \alpha^4, \alpha, \alpha, \alpha^6)$$

Evaluation code $C(A)$

Let $V = \{f \in \mathbb{F}_q[x]\}$ be a set of polynomials, $\dim(V) = k$

$$C : V \rightarrow \mathbb{F}_q^n$$

$$f \mapsto ev_A(f) = (f(P_i), i = 1, \ldots, n)$$
Reed-Solomon codes
Reed-Solomon codes
Reed-Solomon codes
Evaluation codes with locality
Construction of \((n, k, r)\) LRC codes: Example

Parameters: \(n = 9, k = 4, r = 2, q = 13\);

Set of points: \(A = \{P_1, \ldots, P_9\} \subset \mathbb{F}_{13}\)
\[A = \{A_1 = (1, 3, 9), A_2 = (2, 6, 5), A_3 = (4, 12, 10)\} \]

Set of functions: \(P = \{f_a(x) = a_0 + a_1 x + a_3 x^3 + a_4 x^4\}\)

Code construction:
\[ev_A : f_a \mapsto (f(P_i), i = 1, \ldots 9) \]

E.g., \(a = (1111)\) then \(f_a(x) = 1 + x + x^3 + x^4\)

\[c := ev_A(f_a) = (4, 8, 7 | 1, 11, 2 | 0, 0, 0) \]

\[f_a(x)|_{A_1} = a_0 + a_3 + (a_1 + a_4)x = 2 + 2x \]

\[f_a(x)|_{A_2} = a_0 + 8a_3 + (a_1 + 8a_4)x \]
Construction of \((n, k, r)\) LRC codes

\[A = (P_1, \ldots, P_n) \subset \mathbb{F}_q \]

\[A = A_1 \cup A_2 \cup \cdots \cup A_{\frac{n}{r+1}} \]

Basis of functions: Take \(g(x)\) constant on \(A_i, i = 1, \ldots, \frac{n}{r+1}\) (above \(g(x) = x^3\))

\[V = \langle g(x)^j x^i, i = 0, \ldots, r-1; j = 0, \ldots, \frac{k}{r} - 1 \rangle; \quad \text{dim}(V) = k \]

\[V = \left\{ f_a(x) = \sum_{i=0}^{r-1} \sum_{j=0}^{k-1} a_{ij} g(x)^j x^i \right\} \]

We obtain a family of optimal \(r\)-LRC codes

Erasure recovery by polynomial interpolation over \(r\) points.

Extensions

- Codes with multiple disjoint recovery sets for every coordinate
- Codes that recover locally from $\rho \geq 2$ erasures: The local codes are $[r + \rho - 1, r, \rho]$ MDS
- Systematic encoding
Let $C \subset \mathbb{F}_q^n$ be an r-LRC code, $|C| = q^k$, distance d

$$d \leq n - k - \left\lceil \frac{k}{r} \right\rceil + 2$$

(P. Gopalan e.a. 2012)

$$k \leq \min_{s \geq 1}\{sr + k_q(n - s(r + 1), d)\}$$

(V. Cadambe and A. Mazumdar, 2013-15)

Bounds for multiple recovery sets (work with I. Tamo, 2014)
Asymptotic bounds

Binary codes, $r = 3; n \to \infty$

$$R_q(r, \delta) > 0, \quad 0 \leq \delta < (q - 1)/q$$

$$R_q(r, 0) = \frac{r}{r + 1}, \quad R_q(r, \delta) = 0, \quad \frac{q - 1}{q} \leq \delta \leq 1$$
Geometric view of LRC codes

\[A = \{1, \ldots, 9\} \subset \mathbb{F}_{13} \]

\[A = A_1 \cup A_2 \cup A_3 \]

\[A_1 = (1, 3, 9) \]
\[A_2 = (2, 6, 5) \]
\[A_3 = (4, 12, 10) \]

\[g: A \rightarrow \mathbb{F}_{13} \]
\[x \mapsto x^3 - 1 \]

\[g: \mathbb{F}_{13} \rightarrow \{0, 7, 8\} \subset \mathbb{F}_{13} \]
\[|g^{-1}(y)| = r + 1 \]
Consider the set of pairs \((x, y) \in \mathbb{F}_9\) that satisfy the equation \(x^3 + x = y^4\)

Affine points of the Hermitian curve \(\mathcal{C}\) over \(\mathbb{F}_9\); \(\alpha^2 = \alpha + 1\)
Codes on curves

Hermitian codes

\[g : \mathcal{X} \rightarrow \mathbb{P}^1 \]
\[(x, y) \mapsto y \]

Space of functions \(V := \langle 1, y, y^2, x, xy, xy^2 \rangle \)

A={Affine points of the Hermitian curve over \(\mathbb{F}_9 \)}; \(n = 27, k = 6 \)

\[C : V \rightarrow \mathbb{F}^n_9 \]

E.g., message \((1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5)\)

\[F(x, y) = 1 + \alpha y + \alpha^2 y^2 + \alpha^3 x + \alpha^4 xy + \alpha^5 xy^2 \]

\[F(0, 0) = 1 \text{ etc.} \]
LRC codes on curves

\[
\begin{array}{ccccccc}
\alpha^7 & \alpha^6 & \alpha^5 & \alpha^4 & \alpha^3 & \alpha^2 & \alpha \\
\alpha^6 & \alpha^5 & \alpha^4 & \alpha^3 & \alpha^2 & \alpha & 0 \\
\alpha^5 & \alpha^4 & \alpha^3 & \alpha^2 & \alpha & 0 & 0 \\
\alpha^4 & \alpha^3 & \alpha^2 & \alpha & 0 & 0 & 0 \\
\alpha^3 & \alpha^2 & \alpha & 0 & 0 & 0 & 0 \\
\alpha^2 & \alpha & 0 & 1 & 1 & \alpha^6 & \alpha^4 & 0 \\
\alpha & 0 & 1 & 0 & 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 & \alpha^7 \\
y & 0 & 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 & \alpha^7 \\
\end{array}
\]
Let $P = (\alpha, 1)$ be the erased location.
Local recovery with Hermitian codes

Let $P = (\alpha, 1)$ be the erased location. Recovery set $I_P = \{(\alpha^4, 1), (\alpha^3, 1)\}$

Find $f(x) : f(\alpha^4) = \alpha^7, f(\alpha^3) = \alpha^3$

$$\Rightarrow f(x) = \alpha x - \alpha^2$$

$f(\alpha) = 0 = F(P)$
Hermitian codes

\[q = q_0^2, \quad q_0 \text{ prime power} \]

\[\mathcal{X} : x^{q_0} + x = y^{q_0+1} \]

\(\mathcal{X} \) has \(q_0^3 = q^{3/2} \) points in \(\mathbb{F}_q \)

Let \(g : \mathcal{X} \rightarrow \mathcal{Y} = \mathbb{P}^1, \ g(P) = g(x, y) := y \)

We obtain a family of \(q \)-ary codes of length \(n = q_0^3 \),

\[k = (t + 1)(q_0 - 1), \quad d \geq n - tq_0 - (q_0 - 2)(q_0 + 1) \]

with locality \(r = q_0 - 1 \).

It is also possible to take \(g(P) = x \) (projection on \(x \)); we obtain LRC codes with locality \(q_0 \)
General construction

Map of curves

X, Y smooth projective absolutely irreducible curves over \mathbb{k}

$g : X \to Y$

rational separable map of degree $r + 1$

Lift the points of Y

$S = \{P_1, \ldots, P_s\} \subset Y(\mathbb{k})$. Partition of points:

$A := g^{-1}(S) = \{P_{ij}, i = 0, \ldots, r, j = 1, \ldots, s\} \subset X(\mathbb{k})$

such that $g(P_{ij}) = P_j$ for all i, j

Basis of the function space:

$Q_\infty = \pi^{-1}(\infty)$, where $\pi : Y \to \mathbb{P}^1_{\mathbb{k}}$

$\{f_1, \ldots, f_m\}$ span $L(tQ_\infty)$, $t \geq 1$

$\{f_jx^i, i = 0, \ldots, r - 1; j = 1, \ldots, m\}$

Construct LRC codes

Evaluation codes constructed on the set A are LRC codes with locality r. Barg (UMD)
Asymptotically good codes

Asymptotically good sequences of codes

Let $q = q_0^2$, where q_0 is a prime power. Take Garcia-Stichtenoth towers of curves:

$$x_0 := 1; \quad X_1 := \mathbb{P}^1, \quad \mathbb{k}(X_1) = \mathbb{k}(x_1);$$

$$X_l : z_l^{q_0} + z_l = x_{l-1}^{q_0+1}, \quad x_{l-1} := \frac{z_{l-1}}{x_{l-2}} \in \mathbb{k}(X_{l-1}) \text{ (if } l \geq 3)$$

There exist families of q-ary LRC codes with locality r whose rate and relative distance satisfy

$$R \geq \frac{r}{r+1} \left(1 - \delta - \frac{3}{\sqrt{q} + 1}\right), \quad r = \sqrt{q} - 1$$

$$R \geq \frac{r}{r+1} \left(1 - \delta - \frac{2\sqrt{q}}{q-1}\right), \quad r = \sqrt{q}$$

*) Recall the TVZ bound without locality: $R \geq 1 - \delta - \frac{1}{\sqrt{q-1}}$
LRC codes on curves better than the GV bound

\[R \]

LRC codes on curves

LRC GV bound
Extensions

Common theme: Automorphism groups of curves

- LRC codes on curves with multiple recovery sets
- Asymptotically good codes with small locality
 Let \((r + 1)|(q_0 + 1)\)
 \(k(Y_{l,r}) = k(x_1^{r+1}, z_2, \ldots, z_l)\)

 \[g : X_l \rightarrow Y_{l,r} \]
 \[x_1 \mapsto x_1^{r+1} \]

- Local codes with distance \(\rho \geq 3\)

Work with I. Tamo and S. Vlăduț, 2015; ongoing
Consider the special case of the RS-like code family with \(n \mid (q - 1) \), \(g(x) = \prod_{h \in H}(x - h) \), where \(H \) is a subgroup of \(\mathbb{F}_q^* \)

\[
f_a(x) = \sum_{\substack{i=0 \\text{ to } (k/r)(r+1)-2 \\text{ \& } i \neq r \text{ mod}(r+1)}} a_i x^i
\]

Theorem: Consider the following sets of elements of \(\mathbb{F}_q \):

\[
L = \{\alpha^i, i \mod(r+1) = l\} \text{ and } D = \{\alpha^{i+s}, s = 0, \ldots, n - k(r+1)/r\},
\]

where \(\alpha^j \in L \). The cyclic code with the defining set of zeros \(Z = L \cup D \) is an optimal \((n, k, r)\) \(q \)-ary cyclic LRC code.
Set of zeros

Subsets of zeros for distance (D) and locality (L)

Proposition: Let $t | n$. If \mathcal{Z} contains some coset of the group of tth roots of unity, then

$$d(C\perp) \leq t,$$

i.e., C has locality $r = t - 1$.

$$\begin{align*}
C & \iff C\perp \\
\mathbb{F}_p & \iff Tr \\
D & \iff D\perp
\end{align*}$$

(BCGT, 2015; ongoing)
Outlook

- Partial MDS codes (max recoverable codes)
- Cyclic codes
- Decoding
- Constructions on curves

Thank you!