Network Equivalence in the Presence of Active Adversaries

Oliver Kosut

joint work with Jörg Kliewer

December 17, 2015
Networks with Active Adversaries

Two kinds of unknowns:
- Adversary's location: changes slowly
- Adversary's transmission: changes quickly
Two kinds of unknowns:

- Adversary’s location — changes slowly
- Adversary’s transmission — changes quickly
Network modeled by:

\[p(y_1, y_2, \ldots, y_m \mid x_1, x_2, \ldots, x_m, s_{CC}, s_{AVC}) \]

- \(s_{CC} \) is a \textit{compound channel}-type state — fixed across coding block
- \(s_{AVC} \) is an \textit{arbitrarily varying channel}-type state — arbitrary across coding block
Network modeled by:

\[p(y_1, y_2, \ldots, y_m \mid x_1, x_2, \ldots, x_m, s_{\text{CC}}, s_{\text{AVC}}) \]

- \(s_{\text{CC}} \) is a **compound channel**-type state — fixed across coding block
- \(s_{\text{AVC}} \) is an **arbitrarily varying channel**-type state — arbitrary across coding block

Difficulties:
- Multiple sources
- Complex noisy network
- Adversarial choices
Network modeled by:

\[p\left(y_1, y_2, \ldots, y_m \bigg| x_1, x_2, \ldots, x_m, s_{CC}, s_{AVC}\right) \]

- \(s_{CC} \) is a \textbf{compound channel}-type state — fixed across coding block
- \(s_{AVC} \) is an \textbf{arbitrarily varying channel}-type state — arbitrary across coding block

Difficulties:

- Multiple sources
- Complex noisy network
- Adversarial choices \(\Leftarrow \text{Eliminate this!} \)
Koetter-Effros-Médard (2011):

- Each channel replaced by a bit-pipe with the same capacity
- Networks are equivalent in that the capacity regions are the same, for arbitrary multicast requirements
- Separation between channel coding and network coding
Most related work on network equivalence

- Koetter-Effros-Médard part II — multiterminal channels
- Dikaliotis-Yao-Ho-Effros-Kliewer (2012) — eavesdropper
- Bakshi-Effros-Ho (2011) — active adversary replaces the output of an unknown subset of channels
Outline

- Network equivalence results for compound channels
- Network equivalence results for arbitrarily varying channels
- Network equivalence results for joint CC/AVC model
Point-to-point compound channel, independent of the rest of the network, with independent state
Point-to-point compound channel, independent of the rest of the network, with independent state.
Point-to-Point Compound Channel

Point-to-Point Compound Channel

$$S^n = (s, s, \ldots, s)$$

Encoder \(X^n \) \(p(y|x,s) \) \(Y^n \) Decoder

Feedback capacity

$$\text{Feedback capacity} = \min_s \max_p (x) I(X;Y|S=s)$$
Point-to-Point Compound Channel

\[S^n = (s, s, \ldots, s) \]

Encoder \[X^n \xrightarrow{p(y|x,s)} Y^n \] Decoder

Capacity = \(\max_{p(x)} \min_s I(X; Y|S = s) \)
Point-to-Point Compound Channel

\[S^n = (s, s, \ldots, s) \]

Encoder \(\xrightarrow{X^n} p(y|x, s) \xrightarrow{Y^n} \) Decoder

Bit-pipe Capacity \(R > 0 \)

Capacity = \(\max_{p(x)} \min_s I(X; Y|S = s) \)

Feedback capacity = \(\min_s \max_{p(x)} I(X; Y|S = s) \)
Equivalence for Compound Channels

Theorem (KK-15)

Point-to-point compound channel between node 1 and 2 is equivalent to bit-pipe of capacity

\[
\min_s \max_{p(x)} I(X; Y|S = s) \quad \text{if the network allows feedback,}
\]

\[
\max_{p(x)} \min_s I(X; Y|S = s) \quad \text{otherwise.}
\]
Theorem (KK-15)

Point-to-point compound channel between node 1 and 2 is equivalent to bit-pipe of capacity

\[
\min_s \max_{p(x)} I(X; Y|S = s) \quad \text{if the network allows feedback,}
\]

\[
\max_{p(x)} \min_s I(X; Y|S = s) \quad \text{otherwise.}
\]
Point-to-point AVC, independent of the rest of the network, with independent state.
Point-to-point AVC, independent of the rest of the network, with independent state
Point-to-Point Arbitrarily Varying Channel

$S^n = (s_1, s_2, \ldots, s_n)$

Encoder $\xrightarrow{X^n} p(y|x, s) \xrightarrow{Y^n} $ Decoder

C_r is the capacity when the encoder/decoder have access to shared randomness:

$C_r = \max_{P(x)} \min_{P(s)} I(X; Y)$

An AVC is symmetrizable if there exists $P(s|x, x_0)$ such that $X_s P(y|x, s) P(s|x_0)$ is symmetric in x, x_0.

Csiszar-Narayan (1988):

AVC capacity > 0 if channel is symmetrizable

C_r otherwise.
Point-to-Point Arbitrarily Varying Channel

Random code capacity C_r is the capacity when the encoder/decoder have access to shared randomness

$$C_r = \max_{p(x)} \min_{p(s)} I(X; Y)$$
Point-to-Point Arbitrarily Varying Channel

Random code capacity \(C_r \) is the capacity when the encoder/decoder have access to shared randomness

\[
C_r = \max_{p(x)} \min_{p(s)} I(X; Y)
\]

An AVC is symmetric if there exists \(p(s|x) \) such that

\[
\sum_s p(y|x, s)p(s|x') \text{ is symmetric in } x, x'
\]
Point-to-Point Arbitrarily Varying Channel

Random code capacity C_r is the capacity when the encoder/decoder have access to shared randomness

$$C_r = \max_{p(x)} \min_{p(s)} I(X; Y)$$

An AVC is symmetrizable if there exists $p(s|x)$ such that

$$\sum_s p(y|x, s)p(s|x')$$ is symmetric in x, x'

Csiszar-Narayan (1988):

$$\text{AVC capacity} = \begin{cases} 0 & \text{if channel is symmetrizable} \\ C_r & \text{otherwise} \end{cases}$$
Easy to show bit-pipe C_r is an outer bounding model if common randomness can be established between transmitter and receiver at any positive rate.
Towards Network Equivalence for AVC

Easy to show bit-pipe C_r is an outer bounding model
Towards Network Equivalence for AVC

- Easy to show bit-pipe C_r is an outer bounding model
- Bit-pipe C_r is an inner bounding model if common randomness can be established between transmitter and receiver at any positive rate
When can common randomness be established?

- parallel path from transmitter to receiver of any positive rate
When can common randomness be established?

- parallel path from transmitter to receiver of any positive rate
- reverse path from receiver to transmitter of any positive rate
When can common randomness be established?

- parallel path from transmitter to receiver of any positive rate
- reverse path from receiver to transmitter of any positive rate
- paths of any positive rate from a node u to both transmitter and receiver
Theorem (KK-15)

"AVC from node 1 to 2 is equivalent to bit-pipe of capacity C_r if

(i) the channel is non-symmetrizable, or

(ii) there exists a node u that can send information at any positive rate to both nodes 1 and 2."
Equivalence for Arbitrary Varying Channels

Theorem (KK-15)

AVC from node 1 to 2 is equivalent to bit-pipe of capacity C_r if

(i) the channel is non-symmetrizable, or

(ii) there exists a node u that can send information at any positive rate to both nodes 1 and 2.
Each channel given by $p(y|x, s)$

Adversary chooses k channels (CC-type state), and controls state s for each of those channels (AVC-type state)

If channel is untouched by adversary, assume null state s_0
For each channel, two capacities:

- Ordinary capacity, with null state:
 \[C = \max_{p(x)} I(X; Y | S = s_0) \]

- AVC random coding capacity:
 \[C_r = \max_{p(x)} \min_{p(s)} I(X; Y) \]
Simple Outer Bound

For each channel, two capacities:

- **Ordinary capacity, with null state:**
 \[C = \max_{p(x)} I(X; Y | S = s_0) \]

- **AVC random coding capacity:**
 \[C_r = \max_{p(x)} \min_{p(s)} I(X; Y) \]

Given a set of channels \(\mathcal{Z} \), let \(\mathcal{N}_\mathcal{Z} \) be the noiseless network where:

- all channels in \(\mathcal{Z}^c \) are replaced by bit-pipe of capacity \(C \)
- all channels in \(\mathcal{Z} \) are replaced by bit-pipe of capacity \(C_r \)
Simple Outer Bound

For each channel, two capacities:

- Ordinary capacity, with null state:
 \[C = \max_{p(x)} I(X; Y | S = s_0) \]

- AVC random coding capacity:
 \[C_r = \max_{p(x)} \min_{p(s)} I(X; Y) \]

Given a set of channels \(\mathcal{Z} \), let \(\mathcal{N}_z \) be the noiseless network where:

- all channels in \(\mathcal{Z}^c \) are replaced by bit-pipe of capacity \(C \)
- all channels in \(\mathcal{Z} \) are replaced by bit-pipe of capacity \(C_r \)

Theorem

For all \(\mathcal{Z} \) with \(|\mathcal{Z}| \leq k \), \(\mathcal{R}(\mathcal{N}) \subseteq \mathcal{R}(\mathcal{N}_z) \)
Full Connectivity

Assume any pair of nodes can communicate at some positive rate

\[R(N) = \mathbb{Z} : |\mathbb{Z}| \leq k R(N^Z) \]
Assume any pair of nodes can communicate at some positive rate

Theorem

Assuming full connectivity,

\[R(\mathcal{N}) = \bigcap_{|Z| \leq k} R(\mathcal{N}_Z) \]
Maintain global list \mathcal{Z} of suspected adversarial channels.
Achievability Proof

Maintain global list \mathcal{Z} of suspected adversarial channels
Achievability Proof

- Maintain global list \mathcal{Z} of suspected adversarial channels
- If M sent in noiseless network, encode M on noisy channel, assuming null state
Maintain global list Z of suspected adversarial channels

If M sent in noiseless network, encode M on noisy channel, assuming null state

Transmit hash $\psi(M)$ on parallel, low-rate path
Achievability Proof

- Maintain global list \mathcal{Z} of suspected adversarial channels
- If M sent in noiseless network, encode M on noisy channel, assuming null state
- Transmit hash $\psi(M)$ on parallel, low-rate path
- If mismatch, drop to AVC code at rate C_r, and add channel (i, j) to global list \mathcal{Z}
The edge removal property does **NOT** hold with adversarial channels:

Deleting bit-pipe δ significantly affects capacity region.
Capacity region consists of pairs (R_1, R_2) such that

\[R_2 \leq \beta \]

\[R_1 \leq \alpha + \min \left\{ C_r, \frac{\beta - R_2}{M + 1} \right\} \]

This region cannot occur with any fixed-capacity bit-pipe
Conclusions

- Network equivalence results for:
 - Compound channels
 - Arbitrarily varying channels
 - Joint CC/AVC model

- All results become simpler under full connectivity assumption
Conclusions

• Network equivalence results for:
 • Compound channels
 • Arbitrarily varying channels
 • Joint CC/AVC model

• All results become simpler under full connectivity assumption

Open problems:

• What if full connectivity assumption does not hold?

• Joint CC/AVC model beyond network of point-to-point links