Distributed Summaries

Graham Cormode
graham@research.att.com

Pankaj Agarwal (Duke)
Zengfeng Huang (HKUST)
Jeff Philips (Utah)
Zheiwei Wei (HKUST)
Ke Yi (HKUST)
Summaries

Summaries allow approximate computations:
- Euclidean distance (Johnson-Lindenstrauss lemma)
- Vector Inner-product, Matrix product (sketches)
- Distinct items (Flajolet-Martin onwards)
- Frequent Items (Misra-Gries onwards)
- Compressed sensing
- Subset-sums (samples)
Approximation and Parallel Computation

♦ Why use approximate when data storage is cheap?
 – Parallelize computation: partition and summarize data
 ■ Consider holistic aggregates, e.g. count-distinct
 – Faster computation (only send summaries, not full data)
 ■ Less marshalling, load balancing needed
 – Implicit in some tools (Sawzall)
Mergability

♦ Ideally, summaries are algebraic: associative, commutative
 – Allows arbitrary computation trees
 (see also synopsis diffusion [Nath+04], MUD model)
 – Distribution “just works”, whatever the architecture

♦ Summaries should have bounded size
 – Ideally, independent of base data size
 – Or sublinear in base data (logarithmic, square root)
 – Should **not** depend on number of merges
 – Rule out “trivial” solution of keeping union of input
Models of Summary Construction

♦ Offline computation: e.g. sort data, take percentiles
♦ Streaming: summary merged with one new item each step
♦ One-way merge: each summary merges into at most one
 – Single level hierarchy merge structure
 – Caterpillar graph of merges
♦ Equal-size merges: can only merge summaries of same arity
♦ Full mergeability: allow arbitrary merging schemes
 – Our main interest
Merging: sketches

♦ **Example**: most sketches (random projections) fully mergeable

♦ **Count-Min sketch of vector** $x[1..U]$:
 - Creates a small summary as an array of $w \times d$ in size
 - Use d hash functions h to map vector entries to $[1..w]$
 - Estimate $x[i] = \min_j \text{CM}[h_j(i), j]$

♦ **Trivially mergeable**: $\text{CM}(x + y) = \text{CM}(x) + \text{CM}(y)$

![Array: CM[i,j]](w)
Merging: sketches

♦ **Consequence** of sketch mergability:
 – Full mergability of quantiles, heavy hitters, F0, F2, dot product...
 – Easy, widely implemented, used in practice

♦ **Limitations** of sketch mergeability:
 – Probabilistic guarantees
 – May require discrete domain (ints, not reals or strings)
 – Some bounds are logarithmic in domain size
Summaries for heavy hitters

- **Misra-Gries (MG) algorithm** finds up to k items that occur more than $1/k$ fraction of the time in a stream.
- Keep k different candidates in hand. For each item in stream:
 - If item is monitored, increase its counter.
 - Else, if $<k$ items monitored, add new item with count 1.
 - Else, decrease all counts by 1.
Streaming MG analysis

- $N =$ total weight of input
- $M =$ sum of counters in data structure
- Error in any estimated count at most $(N-M)/(k+1)$
 - Estimated count a lower bound on true count
 - Each decrement spread over $(k+1)$ items: 1 new one and k in MG
 - Equivalent to deleting $(k+1)$ distinct items from stream
 - At most $(N-M)/(k+1)$ decrement operations
 - Hence, can have “deleted” $(N-M)/(k+1)$ copies of any item
Merging two MG Summaries

♦ Merging alg:
 – Merge the counter sets in the obvious way
 – Take the \((k+1)\)th largest counter = \(C_{k+1}\), and subtract from all
 – Delete non-positive counters
 – Sum of remaining counters is \(M_{12}\)

♦ This alg gives full mergeability:
 – Merge subtracts at least \((k+1)C_{k+1}\) from counter sums
 – So \((k+1)C_{k+1} \leq (M_1 + M_2 - M_{12})\)
 – By induction, error is
 \[
 \frac{((N_1 - M_1) + (N_2 - M_2) + (M_1 + M_2 - M_{12}))}{(k+1)} = \frac{((N_1 + N_2) - M_{12})}{(k+1)}
 \]
Quantiles

- Quantiles / order statistics generalize the median:
 - Exact answer: $CDF^{-1}(\phi)$ for $0 < \phi < 1$
 - Approximate version: tolerate answer in $CDF^{-1}(\phi - \epsilon)...CDF^{-1}(\phi + \epsilon)$
- Hoeffding bound: sample of size $O(1/\epsilon^2 \log 1/\delta)$ suffices
- Easy result: one-way mergeability in $O(1/\epsilon \log (\epsilon n))$
 - Assume a streaming summary (e.g. Greenwald-Khanna)
 - Extract an approximate CDF F from the summary
 - Generate corresponding distribution f over n items
 - Feed f to summary, error is bounded
 - Limitation: repeatedly extracting/inserting causes error to grow
Equal-weight merging quantiles

- A classic result (Munro-Paterson ’78):
 - **Input**: two summaries of equal size \(k \)
 - **Base case**: fill summary with \(k \) input items
 - Merge, sort summaries to get size \(2k \)
 - Take every other element

- **Deterministic bound**:
 - Error grows proportional to height of merge tree
 - Implies \(O(1/\varepsilon \log^2 n) \) sized summaries (for \(n \) known upfront)

- **Randomized twist**:
 - Randomly pick whether to take odd or even elements
Equal-size merge analysis

- Analyze error in range count for any interval after m merges
- Absolute error introduced by i’th level merge is 2^{i-1}
- **Unbiased**: expected error is 0 ($50-50 + 2^{i-1} / -2^{i-1}$)
- Apply Chernoff bound to sum of errors
- Summary size $= O(1/\varepsilon \log^{1/2} 1/\delta)$ gives εN error w/prob $1-\delta$
 - **Neat**: naïve sampling bound requires $O(1/\varepsilon^2 \log 1/\delta)$
 - Tightens randomized result of [Suri Toth Zhou 04]
Fully mergeable quantiles

♦ Use equal-size merging in a standard logarithmic trick:

\[\text{Wt 32} \quad \text{Wt 16} \quad \text{Wt 8} \quad \text{Wt 4} \quad \text{Wt 2} \quad \text{Wt 1} \]

♦ Merge two summaries as binary addition

♦ Fully mergeable quantiles, in \(O(1/\varepsilon \log (\varepsilon n) \log^{1/2} 1/\delta) \)
 – \(n \) = number of items summarized, not known a priori

♦ But can we do better?
Hybrid summary

- **Observation**: when summary has high weight, low order blocks don’t contribute much
 - Can’t ignore them entirely, might merge with many small sets

- **Hybrid structure**:
 - Keep top $O(\log \frac{1}{\epsilon})$ levels as before
 - Also keep a “buffer” sample of (few) items
 - Merge/keep equal-size summaries, and sample rest into buffer

- **Analysis rather delicate**:
 - Points go into/out of buffer, but always moving “up”
 - Gives constant probability of accuracy in $O(\frac{1}{\epsilon} \log^{1.5}(1/\epsilon))$
Other Fully Mergeable Summaries

♦ Samples on distinct (aggregated) keys
♦ ε-approximations in constant VC-dimension v in $O(\varepsilon^{-2v/(v+1)})$
♦ ε-kernels in d-dimensional space in $O(\varepsilon^{(1-d)/2})$
 – For “fat” pointsets: bounded ratio between extents in any direction
♦ Equal-weight merging for k-median implicit from streaming
 – Implies $O(poly n)$ fully-mergeable summary via logarithmic trick
Open Problems

♦ Weight-based sampling over non-aggregated data
♦ Fully mergeable ε-kernels without assumptions
♦ More complex functions, e.g. cascaded aggregates
♦ Lower bounds for mergeable summaries
♦ Implementation studies (e.g. in Hadoop)