Mapreduce With Parallelizable Reduce

S. Muthu Muthukrishnan
Some Premises

- At a deliberately high level, we know the MapReduce system.
Some Premises

- At a deliberately high level, we know the MapReduce system.
 - Parallel. Map and Reduce functions. Used when data is large. Changing system.
Some Premises

- At a deliberately high level, we know the MapReduce system.
 - Parallel. Map and Reduce functions. Used when data is large. Changing system.
- There is nice PRAM theory of parallel algorithms.
Some Premises

- At a deliberately high level, we know the MapReduce system.
 - Parallel. Map and Reduce functions. Used when data is large. Changing system.
- There is nice PRAM theory of parallel algorithms.
 - NC, prefix sums, list ranking, and more.
Some Premises

- At a deliberately high level, we know the MapReduce system.
 - Parallel. Map and Reduce functions. Used when data is large. Changing system.
- There is nice PRAM theory of parallel algorithms.
 - NC, prefix sums, list ranking, and more.
- Goal: Develop a useful theory of MapReduce algorithms.
Some Premises

- At a deliberately high level, we know the MapReduce system.
 - Parallel. Map and Reduce functions. Used when data is large. Changing system.
- There is nice PRAM theory of parallel algorithms.
 - NC, prefix sums, list ranking, and more.
- Goal: Develop a useful theory of MapReduce algorithms.
 - An algorithmus role. Interesting problems, algorithms. Bridge from the other side.
Thoughts Circa 2006

- Prefix sum in $O(1)$ rounds.
Thoughts Circa 2006

- Prefix sum in $O(1)$ rounds.
 - Problem: $A[1,\ldots,n] \Rightarrow PA[1,\ldots,n]$ where $PA[i] = \sum_{j\leq i} A[j]$.

Some graph algorithms in $O(1)$ rounds recently.
Thoughts Circa 2006

- Prefix sum in $O(1)$ rounds.
 - Problem: $A[1, \ldots, n] \Rightarrow PA[1, \ldots, n]$ where $PA[i] = \sum_{j \leq i} A[j]$.
 - Solution:
 - Assign $A[i\sqrt{n} + 1, \ldots, (i + 1)\sqrt{n}]$ to key i.

- Some graph algorithms in $O(1)$ rounds recently.
Thoughts Circa 2006

- Prefix sum in $O(1)$ rounds.
 - Problem: $A[1, \ldots, n] \Rightarrow PA[1, \ldots, n]$ where $PA[i] = \sum_{j \leq i} A[j]$.
 - Solution:
 - Assign $A[i\sqrt{n} + 1, \ldots, (i+1)\sqrt{n}]$ to key i.
 - Solve problem on $B[1, \sqrt{n}]$ with one proc, $B[i] = \sum_{i\sqrt{n}+1}^{(i+1)\sqrt{n}} A[j]$. Doable?
Thoughts Circa 2006

- Prefix sum in $O(1)$ rounds.
 - Problem: $A[1, \ldots, n] \Rightarrow PA[1, \ldots, n]$ where $PA[i] = \sum_{j \leq i} A[j]$.
 - Solution:
 - Assign $A[i \sqrt{n} + 1, \ldots, (i + 1)\sqrt{n}]$ to key i.
 - Solve problem on $B[1, \sqrt{n}]$ with one proc, $B[i] = \sum_{i, \sqrt{n}+1}^{(i+1)\sqrt{n}} A[j]$. Doable?
 - Solve problem for key i with $PB[i - 1]$. Doable?
Thoughts Circa 2006

- Prefix sum in $O(1)$ rounds.
 - Problem: $A[1, \ldots, n] \Rightarrow PA[1, \ldots, n]$ where $PA[i] = \sum_{j \leq i} A[j]$.
 - Solution:
 - Assign $A[i\sqrt{n} + 1, \ldots, (i + 1)\sqrt{n}]$ to key i.
 - Solve problem on $B[1, \sqrt{n}]$ with one proc, $B[i] = \sum_{i, \sqrt{n} + 1}^{(i+1)\sqrt{n}} A[j]$. Doable?
 - Solve problem for key i with $PB[i - 1]$. Doable?

- List ranking in $O(1)$ rounds?
 - Some graph algorithms in $O(1)$ rounds recently.
Problem: Given graph $G = (V, E)$, count the number of triangles.\(^1\)

\(^1\)For ex, see. Fast Counting of Triangles in Large Real Networks without counting: Algorithms and Laws, ICDM 08, by C. Tsourakakis.
SIROCCO Challenge

- Problem: Given graph $G = (V, E)$, count the number of triangles.1
- Solution:
 - For each edge (u, v), generate a tuple $(u, v, 0)$.
 - For each vertex v and for each pair of neighbors x, z of v, generate a tuple $(x, z, 1)$.
 - Presence of both 0 and 1 tuple for an edge is a triangle.

1For ex, see. Fast Counting of Triangles in Large Real Networks without counting: Algorithms and Laws, ICDM 08, by C. Tsourakakis.
Problem: Given graph $G = (V, E)$, count the number of triangles.\(^1\)

Solution:
- For each edge (u, v), generate a tuple $(u, v, 0)$.
- For each vertex v and for each pair of neighbors x, z of v, generate a tuple $(x, z, 1)$.
- Presence of both 0 and 1 tuple for an edge is a triangle.

Solution: The number of triangles is $\frac{1}{6} \sum_i \lambda_i^3$ where λ_i are eigenvalues of adjacency matrix A of G in sorted order.
- A_{ii}^3 is the number of triangles involving i.
- The trace is 6 times the number of triangles.
- If λ is eigenvalue of A, ie., $Ax = \lambda x$, then λ^3 is eigenvalue of A^3.
- In practice, computing top few eigenvalues suffices.

\(^1\)For ex., see. Fast Counting of Triangles in Large Real Networks without counting: Algorithms and Laws, ICDM 08, by C. Tsourakakis.
Eigenvalue Estimation

A is a $n \times n$ real valued matrix.

- Lanczos method.
Eigenvalue Estimation

\(A\) is a \(n \times n\) real valued matrix.

- Lanczos method.
- Sketches. \(Ar\) for pseudo random \(n \times d\) vector \(r\), \(d \ll n\). Will \(O(nd)\) sketch fit into one machine?
Special Case

Motivation: Logs processing.

\[
\begin{align*}
x &= \text{inputrecord;} \\
x^2 &= x \times x; \\
\text{aggregator: table sum;} \\
\text{emit aggregator } &\leftarrow x^2;
\end{align*}
\]

MUD Algorithm \(m = (\Phi, \Theta, \eta) \).

- Local function \(\Phi : \Sigma \rightarrow Q \) maps input item to a message.
- Aggregator \(\Theta : Q \times Q \rightarrow Q \) maps two messages to a single message.
- Post-processing operator \(\eta : Q \rightarrow \Sigma \) produces the final output, applying \(m_T(x) \).
- Computes a function \(f \) if \(\eta(m_T(\cdot)) = f \) for all trees \(T \).
MUD Examples

\[\Phi(x) = \langle x, x \rangle \]
\[\oplus(\langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle) = \langle \min(a_1, a_2), \max(b_1, b_2) \rangle \]
\[\eta(\langle a, b \rangle) = b - a \]

Figure: mud algorithm for computing the total span (left)
MUD Examples

\[\Phi(x) = \langle x, h(x), 1 \rangle \]
\[\Theta(\langle a_1, h(a_1), c_1 \rangle, \langle a_2, h(a_2), c_2 \rangle) \]
\[= \begin{cases}
\langle a_i, h(a_i), c_i \rangle & \text{if } h(a_i) < h(a_j) \\
\langle a_1, h(a_1), c_1 + c_2 \rangle & \text{otherwise}
\end{cases} \]
\[\eta(\langle a, b, c \rangle) = a \text{ if } c = 1 \]

Figure: Mud algorithms for computing a uniform random sample of the unique items in a set (right). Here \(h \) is an approximate minwise hash function.
- streaming algorithm $s = (\sigma, \eta)$.
- operator $\sigma : Q \times \Sigma \rightarrow Q$
- $\eta : Q \rightarrow \Sigma$ converts the final state to the output.
- On input $x \in \Sigma^n$, the streaming algorithm computes $f = \eta(s^0(x))$, where 0 is the starting state, and $s^q(x) = \sigma(\sigma(\ldots \sigma(\sigma(q, x_1), x_2), \ldots, x_{k-1}), x_k)$.
- Communication complexity is $\log |Q|$
MUD vs Streaming

- For a mud algorithm $m = (\Phi, \oplus, \eta)$, there is a streaming algorithm $s = (\sigma, \eta)$ of the same complexity with same output, by setting $\sigma(q, x) = \oplus(q, \Phi(x))$.
MUD vs Streaming

- For a mud algorithm \(m = (\Phi, \oplus, \eta) \), there is a streaming algorithm \(s = (\sigma, \eta) \) of the same complexity with same output, by setting \(\sigma(q, x) = \oplus(q, \Phi(x)) \).

- Central question: Can MUD simulate streaming?
MUD vs Streaming

- For a mud algorithm $m = (\Phi, \oplus, \eta)$, there is a streaming algorithm $s = (\sigma, \eta)$ of the same complexity with same output, by setting $\sigma(q, x) = \oplus(q, \Phi(x))$.
- Central question: Can MUD simulate streaming?
 - Count the occurrences of the first odd number on the stream.
MUD vs Streaming

- For a mud algorithm $m = (\Phi, \Theta, \eta)$, there is a streaming algorithm $s = (\sigma, \eta)$ of the same complexity with same output, by setting $\sigma(q, x) = \Theta(q, \Phi(x))$.

- Central question: Can MUD simulate streaming?
 - Count the occurrences of the first odd number on the stream.
 - Symmetric problems? Symmetric index problem.

$$S = (a, 1, x_1, p), (a, 2, x_2, p), \ldots, (a, 2, x_n, p),$$
$$\quad (b, 1, y_1, q), (b, 2, y_2, q), \ldots, (b, 2, y_n, q).$$

Additionally, we have $x_q = y_p$. Compute function $f(S) = x_q$.
MUD vs Streaming

For any symmetric function $f : \Sigma^n \rightarrow \Sigma$ computed by a $g(n)$-space, $c(n)$-communication streaming algorithm (σ, η), with $g(n) = \Omega(\log n)$ and $c(n) = \Omega(\log n)$,
MUD vs Streaming

For any symmetric function $f : \Sigma^n \rightarrow \Sigma$ computed by a $g(n)$-space, $c(n)$-communication streaming algorithm (σ, η), with $g(n) = \Omega(\log n)$ and $c(n) = \Omega(\log n)$, there exists a $O(c(n))$-communication, $O(g^2(n))$-space mud algorithm (Φ, Θ, η) that also computes f.
MUD vs Streaming: 2 parties

- x_A and x_B are partitions of the input sequence x sent to Alice and Bob.
MUD vs Streaming: 2 parties

- x_A and x_B are partitions of the input sequence x sent to Alice and Bob.

- Alice runs the streaming algorithm on her input sequence to produce the state $q_A = s^0(x_A)$, and sends this to Carol. Similarly, Bob sends $q_B = s^0(x_B)$ to Carol.
MUD vs Streaming: 2 parties

- x_A and x_B are partitions of the input sequence x sent to Alice and Bob.
- Alice runs the streaming algorithm on her input sequence to produce the state $q_A = s^0(x_A)$, and sends this to Carol. Similarly, Bob sends $q_B = s^0(x_B)$ to Carol.
- Carol receives the states q_A and q_B, which contain the sizes n_A and n_B of the input sequences x_A and x_B, and needs to calculate $f = s^0(x_A\|x_B)$.
Carol finds sequences x'_A and x'_B of length n_A and n_B such that $q_A = s^0(x'_A)$ and $q_B = s^0(x'_B)$.
2 Parties Communication

- Carol finds sequences x'_A and x'_B of length n_A and n_B such that $q_A = s^0(x'_A)$ and $q_B = s^0(x'_B)$.
- Carol then outputs $\eta(s^0(x'_A \cdot x'_B))$.

\[
\begin{align*}
\eta(s^0(x'_A \cdot x'_B)) &= \eta(s^0(x_A \cdot x'_B)) \\
&= \eta(s^0(x'_B \cdot x_A)) \\
&= \eta(s^0(x_B \cdot x_A)) \\
&= \eta(s^0(x_A \cdot x_B)) \\
&= f(x_A \cdot x_B) \\
&= f(x).
\end{align*}
\]
Space Efficient 2 Party Communication

- Non-deterministic simulation:

 First, guess the symbols of x_0^A one at a time, simulating the streaming algorithm $s_0^A(x_0^A)$ on the guess. If after n^A guessed symbols we have $s_0^A(x_0^A) = q^A$, reject this branch.

 Then, guess the symbols of x_0^B, simulating (in parallel) $s_0^B(x_0^B)$ and $s_{q^A}^A(x_0^B)$. If after n^B steps we have $s_0^B(x_0^B) = q^B$, reject this branch; otherwise, output $q^C = s_{q^A}^A(x_0^B)$.

 This procedure is a non-deterministic, $O(g(n))$-space algorithm for computing a valid q^C.

 By Savitch's theorem, it follows that there is a deterministic, $g^2(n)$-space algorithm. Simulation time is superpolynomial.
Space Efficient 2 Party Communication

- Non-deterministic simulation:
 - First, guess the symbols of x'_A one at a time, simulating the streaming algorithm $s^0(x'_A)$ on the guess.
Non-deterministic simulation:

First, guess the symbols of x'_A one at a time, simulating the streaming algorithm $s^0(x'_A)$ on the guess. If after n_A guessed symbols we have $s^0(x'_A) \neq q_A$, reject this branch.
Non-deterministic simulation:

First, guess the symbols of x_A' one at a time, simulating the streaming algorithm $s^0(x_A')$ on the guess. If after n_A guessed symbols we have $s^0(x_A') \neq q_A$, reject this branch. Then, guess the symbols of x_B', simulating (in parallel) $s^0(x_B')$ and $s^{q_A}(x_B')$. By Savitch's theorem, it follows that there is a deterministic, $g(2^n)$-space algorithm.
Space Efficient 2 Party Communication

- Non-deterministic simulation:
 - First, guess the symbols of x'_A one at a time, simulating the streaming algorithm $s^0(x'_A)$ on the guess. If after n_A guessed symbols we have $s^0(x'_A) \neq q_A$, reject this branch.
 - Then, guess the symbols of x'_B, simulating (in parallel) $s^0(x'_B)$ and $s^{q_A}(x'_B)$. If after n_B steps we have $s^0(x'_B) \neq q_B$, reject this branch; otherwise, output $q_C = s^{q_A}(x'_B)$.
 - This procedure is a non-deterministic, $O(g(n))$-space algorithm for computing a valid q_C.

- By Savitch’s theorem, it follows that there is a deterministic, $g^2(n)$-space algorithm.

- Simulation time is superpolynomial.
Finish the proof for arbitrary computation tree inductively.

Extends to streaming algorithms for approximating f that work by computing some other function g exactly over the stream, for example, sketch-based algorithms that maintain $c_i = \langle x, v_i \rangle$ where x is the input vector and some v_i. Public randomness.

Doesn’t extend to randomized algorithms with private randomness, partial functions, etc.
Multiple Keys

- Any \(N\)-processor, \(M\)-memory, \(T\)-time EREW-PRAM algorithm which has a \(\log(N + M)\)-bit word in every memory location, can be simulated by a \(O(T)\)-round, \((N + M)\)-key mud algorithm with communication complexity \(O(\log(N + M))\) bits per key.

- In particular, any problem in class NC has a \(\text{polylog}(n)\)-round, \(\text{poly}(n)\)-key mud algorithm with communication complexity \(O(\log(n))\) bits per key.
Concluding Remarks