Counting Triangles and Modeling MapReduce

Siddharth Suri

Yahoo! Research
Outline

- Modeling MapReduce
 - How and why did we come up with our model?
 - [Karloff, Suri, Vassilvitskii SODA 2010]

- MapReduce algorithms for counting triangles in a graph
 - What do these algorithms say about the model?
 - [Suri, Vassilvitskii WWW 2011]

- Open research questions
MapReduce is a widely used method of parallel computation on massive data.

- Yahoo! uses it to process 120 TB daily
- Facebook uses it to process 80 TB daily
- Google uses it to process 20 petabytes per day
- Also used at The New York Times, Amazon.com, IBM, ...

Implementations: Hadoop, Amazon Elastic MapReduce

Invented by [Dean & Ghemawat ’08]
In practice MapReduce is often used to answer questions like:
- What are the most popular search queries?
- What is the distribution of words in all emails?
- Often used for log parsing, statistics

Massive input, spread across many machines, need to parallelize.
- Moves the data, and provides scheduling, fault tolerance

What is and is not efficiently computable using MapReduce?
Overview of MapReduce

One round of MapReduce computation consists of 3 steps:

Input → MAP₁ → SHUFFLE → REDUCE₁ → Output
Overview of MapReduce

One round of MapReduce computation consists of 3 steps
One round of MapReduce computation consists of 3 steps.
MapReduce Basics: Summary

- Data are represented as a <key, value> pair
- Map: <key, value> → multiset of <key, value> pairs
 - user defined, easy to parallelize
- Shuffle: Aggregate all <key, value> pairs with the same key.
 - executed by underlying system
- Reduce: <key, multiset(value)> → <key, multiset(value)>
 - user defined, easy to parallelize
- Can be repeated for multiple rounds
Building a Model of MapReduce

The situation:
- Input size, n, is massive
- Mappers and Reducers run on commodity hardware

Therefore:
- Each machine must have $O(n^{1-\varepsilon})$ memory
- $O(n^{1-\varepsilon})$ machines
Consequences:

- Mappers have \(O(n^{1-\varepsilon}) \) space
- Length of a \(<\text{key}, \text{value}> \) pair is \(O(n^{1-\varepsilon}) \)
- Reducers have \(O(n^{1-\varepsilon}) \) space
- Total length of all values associated with a key is \(O(n^{1-\varepsilon}) \)
- Mappers and reducers run in time polynomial in \(n \)
- Total space is \(O(n^{2-2\varepsilon}) \)
- Since outputs of all mappers have to be stored before shuffling, total size of all \(<\text{key}, \text{value}> \) pairs is \(O(n^{2-2\varepsilon}) \)
Definition of MapReduce Class (MRC)

- **Input:** finite sequence \(<\text{key}_i, \text{value}_i>\), \(n = \sum_i (|\text{key}_i| + |\text{value}_i|)\)

- **Definition:** Fix an \(\varepsilon > 0\). An algorithm in MRC\(^j\) consists of a sequence of operations \(<\text{map}_1, \text{red}_1, \ldots, \text{map}_R, \text{red}_R>\) where:
 - Each \(\text{map}_r\) uses \(O(n^{1-\varepsilon})\) space and time polynomial in \(n\)
 - Each \(\text{red}_r\) uses \(O(n^{1-\varepsilon})\) space and time polynomial in \(n\)
 - The total size of the output from \(\text{map}_r\) is \(O(n^{2-2\varepsilon})\)
 - The number of rounds \(R = O(\log^j n)\)
Related Work

- Feldman et al. SODA ’08 also study MapReduce
 - Reducers access input as a stream and are restricted to polylog space
 - Compare to streaming algorithms

- Goodrich et al ’11
 - Comparing MapReduce with BSP and PRAM
 - Gives algorithms for sorting, convex hulls, linear programming
Outline

- Modeling MapReduce
 - How and why did we come up with our model?
 - [Karloff, Suri, Vassilvitskii SODA 2010]

- MapReduce algorithms for counting triangles in a graph
 - What do these algorithms say about the model?
 - [Suri, Vassilvitskii WWW 2011]

- Open research questions
Clustering Coefficient

Given $G = (V,E)$ unweighted, undirected

$cc(v) = \text{fraction of } v\text{'s neighbors that are neighbors}$

$$= \frac{|\{(u,w) \in E \mid u \in \Gamma(v) \text{ and } w \in \Gamma(v)\}|}{\binom{d_v}{2}}$$

$= \# \text{ triangles incident on } v$

$\# \text{ possible triangles incident on } v$

Computing the clustering coefficient of each node reduces to computing the number of triangles incident on each node.
Related Work

- Estimating the global triangle count using sampling
 - [Tsourakakis et al ’09]

- Streaming algorithms:
 - Estimating global count
 - [Coppersmith & Kumar ‘04, Buriol et al ’06]
 - Approximating the number of triangles per node using $O(\log n)$ passes
 - [Becchetti et al ‘08]
Why Compute the Clustering Coefficient?

- **Network Cohesion:** Tightly knit communities foster more trust, social norms
 - More likely reputation is known
 - [Coleman ’88, Portes ’98]

- **Structural Holes:** Individuals benefit from bridging
 - Mediator can take ideas from both and innovate
 - Apply ideas from one to problems faced by another
 - [Burt ’04, ’07]
Naive Algorithm for Counting Triangles: NodeItr

- Map 1: for each \(u \in V \), send \(\Gamma(u) \) to a reducer
- Reduce 1: generate all 2-paths of the form \(<v_1, v_2; u>\), where \(v_1, v_2 \in \Gamma(u) \)
- Map 2
 - Send \(<v_1, v_2; u>\) to a reducer,
 - Send graph edges \(<v_1, v_2; \$>\) to a reducer
- Reduce 2: input \(<v_1, v_2; u_1, \ldots, u_k, \$?>\)
 - if \$ in input, then \(v_1, v_2 \) get \(k/3 \) \(\Delta \)'s each, and
 - \(u_1, \ldots, u_k \) get \(1/3 \) \(\Delta \)'s each
Reduce 1: generate all 2-paths among pairs in $v_1, v_2 \in \Gamma(u)$

- NodeItr generates $O(\sum_{v \in V} d_v^2)$ 2-paths which need to be shuffled

- In a sparse graph, one linear degree node results in $\sim n^2$ bits shuffled

- Thus NodeItr is not in MRC, indicating it is not an efficient algorithm.

Does this happen on real data?
NodeItr Performance

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Nodes</th>
<th>Edges</th>
<th># of 2-Paths</th>
<th>Runtime (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>web-BerkStan</td>
<td>6.9×10^5</td>
<td>1.3×10^7</td>
<td>5.6×10^{10}</td>
<td>752</td>
</tr>
<tr>
<td>as-Skitter</td>
<td>1.7×10^6</td>
<td>2.2×10^7</td>
<td>3.2×10^{10}</td>
<td>145</td>
</tr>
<tr>
<td>Live Journal</td>
<td>4.8×10^6</td>
<td>8.6×10^7</td>
<td>1.5×10^{10}</td>
<td>59.5</td>
</tr>
<tr>
<td>Twitter</td>
<td>4.2×10^7</td>
<td>2.4×10^9</td>
<td>2.5×10^{14}</td>
<td>?</td>
</tr>
</tbody>
</table>

- Massive graphs have heavy tailed degree distributions [Barabasi, Albert ’99]
- NodeItr does not scale, model gets this right
NodeIter++: Intuition

- Generating 2-paths around high degree nodes is expensive
- Make the lowest degree node “responsible” for counting the triangle
 - Let \gg be a total order on vertices such that $v \gg u$ if $d_v > d_u$
 - Only generate 2-paths $\langle u, w ; v \rangle$ if $v \ll u$ and $v \ll w$
- [Schank ’07]
Map 1: if $v \gg u$ emit $<u; v>$

Reduce 1: Input $<u; S \subseteq \Gamma(u)>$
generate all 2-paths of the form $<v_1, v_2; u>$, where $v_1, v_2 \in S$

Map 2 and Reduce 2 are the same as before

Thm: The input to any reducer in the first round has $O(m^{1/2})$ edges

Thm (Shank ’07): $O(m^{3/2})$ 2-paths will be output
Nodeltr Performance

<table>
<thead>
<tr>
<th>Data Set</th>
<th># of 2-Paths Nodeltr</th>
<th># of 2-Paths Nodeltr++</th>
<th>Runtime (min) Nodeltr</th>
<th>Runtime (min) Nodeltr++</th>
</tr>
</thead>
<tbody>
<tr>
<td>web-BerkStan</td>
<td>5.6×10^{10}</td>
<td>1.8×10^8</td>
<td>752</td>
<td>1.8</td>
</tr>
<tr>
<td>as-Skitter</td>
<td>3.2×10^{10}</td>
<td>1.9×10^8</td>
<td>145</td>
<td>1.9</td>
</tr>
<tr>
<td>Live Journal</td>
<td>1.5×10^{10}</td>
<td>1.4×10^9</td>
<td>59.5</td>
<td>5.3</td>
</tr>
<tr>
<td>Twitter</td>
<td>2.5×10^{14}</td>
<td>3.0×10^{11}</td>
<td>?</td>
<td>423</td>
</tr>
</tbody>
</table>

- Model indicated shuffling m^2 bits is too much but $m^{1.5}$ bits is not
One Round Algorithm: GraphPartition

- Input parameter ρ: partition V into $V_1, ..., V_\rho$

- Map 1: Send induced subgraph on $V_i \cup V_j \cup V_k$ to reducer (i,j,k) where $i < j < k$.

- Reduce 1: Count number of triangles in subgraph, weight accordingly
Lemma: The expected size of the input to any reducer is $O(m/\rho^2)$.
 - $9/\rho^2$ chance a random edge is in a partition

Lemma: The expected number of bits shuffled is $O(mp)$.
 - $O(\rho^3)$ partitions, combined with previous lemma

Thm: For any $\rho < m^{1/2}$ the total amount of work performed by all machines is $O(m^{3/2})$.
 - ρ^3 partitions, $(m/\rho^2)^{3/2}$ complexity per reducer
Runtime of Algorithms

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Runtime (min) Nodeltr</th>
<th>Runtime (min) Nodeltr++</th>
<th>Runtime (min) GraphPartition</th>
</tr>
</thead>
<tbody>
<tr>
<td>web-BerkStan</td>
<td>752</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>as-Skitter</td>
<td>145</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td>Live Journal</td>
<td>59.5</td>
<td>5.3</td>
<td>10.9</td>
</tr>
<tr>
<td>Twitter</td>
<td>?</td>
<td>423</td>
<td>483</td>
</tr>
</tbody>
</table>

- Model does not differentiate between rounds when they are both constants.
The Curse of the Last Reducer

- LiveJournal data
- NodeItr++ and GraphPartition deal with skew much better than NodeItr
What do Algorithms Say About MRC?

- Model indicated shuffling m^2 bits is too much but $m^{1.5}$ bits is not, this was accurate.
- Rounds can take a long time.
 - GraphPartition only had a constant factor blow up in amount shuffled, still took 8 hours on Twitter.
 - Need to strive for constant round algorithms.
- Two round algorithm took as long as one round algorithm.
 - Streaming on the reducers can be more efficient than loading subgraph into memory.
 - Differentiating between constants is too fine grained for model.
Lower bounds: show that a certain problem requires $\Omega(\log n)$ rounds

- What is the structure of problems solvable using MapReduce?

Space-time tradeoffs
- time: number of rounds
- space: number of bits shuffled

MapReduce is changing, can theorists inform its design?
Thank You!

Siddharth Suri
Yahoo! Research