Parallel Peeling Algorithms

Justin Thaler, Yahoo Labs
Joint Work with:
Michael Mitzenmacher, Harvard University
Jiayang Jiang
The Peeling Paradigm

- Many important algorithms for a wide variety of problems can be modeled in the same way.
- Start with a (random) hypergraph \(G \).
 - While there exists a node \(v \) of degree less than \(k \):
 - Remove \(v \) and all incident edges.
- The remaining graph is called the **k-core** of \(G \).
 - \(k=2 \) in most applications.
- Typically, the algorithm “succeeds” if the the k-core is empty.
 - To ensure “success”, data structure should be designed large enough so that the k-core of \(G \) is empty w.h.p.
- Typically yields simple, greedy algorithms running in linear time.
The peeling process when $k=2$
Example Algorithms
Example 1: Sparse Recovery Algorithms

- Consider data streams that insert and delete a lot of items.
 - Flows through a router, people entering/leaving a building.
- Sparse Recovery problem: list all items with non-zero frequency.
- Want listing not at all times, but at “reasonable” or “off-peak” times, when working set size is bounded.
 - If we do M insertions, then $M-N$ deletions, and want a list at the end, we need to list N items.
- Data structure size should be proportional to N, not to M!
 - Proportional to size you want to be able to list, not number of items your system has to handle.
- Central primitive used in more complicated streaming algorithms.
 - E.g. L_0 sampling, which is in turn used to solve problems on dynamic graph streams (see previous talk).
Example 1: Sparse Recovery Algorithms

- For simplicity, assume that when listing occurs, no item has frequency more than 1.
Example 1: Sparse Recovery Algorithms

- Sparse Recovery Algorithm: Invertible Bloom Lookup Tables (IBLTs) [Goodrich, Mitzenmacher]

Each stream item hashed to r cells (using r different hash functions)

Insert(x): For each of the j cells that x is hashed to:
 - Add key to KeySum
 - Increment Count

Delete(x): For each of the j cells x is hashed to:
 - Subtract key from keysum
 - Decrement Count
Listing Algorithm: Peeling

- Call a cell “pure” if its count equals 1.
- While there exists a pure cell:
 - Output $x=\text{keySum}$ of the cell.
 - Call Delete(x) on the IBLT.

To handle frequencies that are larger than 1, add a checksum field (details omitted).
Listing Algorithm: Peeling

- Call a cell “pure” if its count equals 1.
- While there exists a pure cell:
 - Output $x=\text{keySum}$ of the cell.
 - Call $\text{Delete}(x)$ on the IBLT.
- To handle frequencies that are larger than 1, add a checksum field to each cell (details omitted).
Listing Algorithm: Peeling

- Call a cell “pure” if its count equals 1.
- While there exists a pure cell:
 - Output x=keySum of the cell.
 - Call Delete(x) on the IBLT.
- To handle frequencies that are larger than 1, add a checksum field to each cell (details omitted).

Listing peeling to 2-core on the hypergraph G where:
- Cells vertices of G.
- Items in IBLT hyperedges of G.
- G is r-uniform (each edge has r vertices, one for each cell the item is hashed to).
How Many Cells Does an IBLT Need to Guarantee Successful Listing?

- Consider a random r-uniform hypergraph G with n nodes and $m = c \times n$ edges.
 - i.e., each edge has r vertices, chosen uniformly at random from $[n]$ without repetition.
- Known fact: Appearance of a non-empty k-core obeys a sharp threshold.
 - For some constant $c_{k,r}$, when $m < c_{k,r} n$, the k-core is empty with probability $1 - o(1)$.
 - When $m > c_{k,r} n$, the k-core of G is non-empty with probability $1 - o(1)$.
 - Implication: to successfully list a set of size M with probability $1 - o(1)$, the IBLT needs roughly $M / c_{k,r}$ cells.
- E.g. $c_{2,3} \approx 0.818$, $c_{2,4} \approx 0.772$, $c_{3,3} \approx 1.553$.
How Many Cells Does an IBLT Need to Guarantee Successful Listing?

- Consider a random r-uniform hypergraph G with n nodes and m=c*n edges.
 - i.e., each edge has r vertices, chosen uniformly at random from [n] without repetition.
- Known fact: Appearance of a non-empty k-core obeys a sharp threshold.
 - For some constant c_{k,r}, when m < c_{k,r}n, the k-core is empty with probability 1-o(1).
 - When m > c_{k,r}n, the k-core of G is non-empty with probability 1-o(1).
 - Implication: to successfully list a set of size M with probability 1-o(1), the IBLT needs roughly M/c_{k,r} cells.
- E.g. c_{2,3}≈0.818, c_{2,4}≈0.772, c_{3,3}≈1.553.
- In general:
 \[c_{k,r}^* = \min_{x>0} \frac{x}{r(1 - e^{-x} \sum_{j=0}^{k-2} \frac{x^j}{j!})^{r-1}}. \]
Other Examples of Peeling Algorithms

- Low-Density Parity Check Codes for Erasure Channel.
 - [Luby, Mitzenmacher, Shokrollah, Spielman]
- Biff codes (directly use IBLTs).
 - [Mitzenmacher and Varghese]
- k-wise independent hash families with $O(1)$ evaluation time.
 - [Siegel]
- Sparse FFT algorithms.
 - [Hassanieh et al.]
- Cuckoo hashing.
 - [Pagh and Rodler]
- Pure literal rule for computing satisfying assignments of random CNFs.
 - [Franco] [Mitzenmacher] [Molloy] [many others].
Parallel Peeling Algorithms
Our Goal: Parallelize These Peeling Algorithms

- Recall: the aforementioned algorithms are equivalent to peeling a random hypergraph G to its k-core.
- There is a brain dead way to parallelize the peeling process.
 - For each node v in parallel:
 - Check if v has degree less than k.
 - If so, remove v and its incident hyperedges.
- Key question: how many rounds of peeling are required to find the k-core?
- Algorithm is simple, analysis is tricky.
Main Result

- Two behaviors:
 - Parallel peeling completes in $O(\log \log n)$ rounds if the edge density c is “below the threshold” $c_{k,r}$.
 - Parallel peeling requires $\Omega(\log n)$ rounds if the edge density c is “above the threshold” $c_{k,r}$.
- This is great!
 - Most peeling uses the goal is to be below the threshold.
 - So “nature” is helping us by making parallelization fast.
 - Implies $\text{poly}(\log \log n)$ time, $O(n \text{ poly}(\log \log n))$ work, parallel algorithms for listing elements in an IBLT, decoding LDPC codes, etc.
Precise Upper Bound

Theorem 1. Let $k, r \geq 2$ with $k + r \geq 5$, and let c be a constant. With probability $1 - o(1)$, the parallel peeling process for the k-core in a random hypergraph $G_{n,cn}^r$ with edge density c and r-ary edges terminates after
\[
\frac{1}{\log((k-1)(r-1))} \log \log n + O(1)
\] rounds when $c < c^*_{k,r}$.

Theorem 2. Let $k, r \geq 2$ with $k + r \geq 5$, and let c be a constant. With probability $1 - o(1)$, the parallel peeling process for the k-core in a random hypergraph $G_{n,cn}^r$ with edge density c and r-ary edges requires
\[
\frac{1}{\log((k-1)(r-1))} \log \log n - O(1)
\] rounds to terminate when $c < c^*_{k,r}$.

Summary: The right factor in front of the loglog n is $1/(\log(k-1)(r-1))$ (tight up to an additive constant).
Lower Bound

Theorem 3. Let $r \geq 3$ and $k \geq 2$. With probability $1 - o(1)$, the peeling process for the k-core in $G'_{n,cn}$ terminates after $\Omega(\log n)$ rounds when $c > c^*_k$.

Summary: $\Omega(\log n)$ lower bound matches an earlier $O(\log n)$ upper bound due to [Achlioptas and Molloy, 2013].
Proof Sketch for Upper Bound

• Let λ_i denote the probability a given vertex v survives i rounds of peeling.
• Claim: $\lambda_{i+1} \leq (C\lambda_i)^{(k-1)(r-1)}$ for some constant C.
 • Suggests $\lambda_i \ll 1/n$ after about $1/((k - 1)(r - 1)) \ast \log\log n$ rounds.
 • A related argument shows that $\lambda_i \leq 1/(2C)$ after $O(1)$ rounds, and after that point the claim implies that λ_i falls doubly-exponentially quickly.
Proof Sketch for Upper Bound

• Let λ_i denote the probability a given vertex v survives i rounds of peeling.
• Claim: $\lambda_{i+1} \leq (C\lambda_i)^{(k-1)(r-1)}$ for some constant C.
• Very crude sketch of the Claim’s plausibility:
 • Node v survives round $i+1$ only if it has (at least) k incident edges $e_1\ldots e_k$ that survive round i.
 • Fix a k-tuple of edges $e_1\ldots e_k$ incident to v.
 • Assume no node other than v appears in more than one of these edges.
 • Then there are $k(r-1)$ distinct nodes other than v appearing in these edges.
 • The edges all survive round i only if all $k(r-1)$ of these nodes survive round i.
 • Let’s pretend that the survival of these nodes are independent events.
 • Then the probability all nodes survive round i is roughly $\lambda_i^{k(r-1)}$.
 • Finally, union bound over all k-tuples of edges incident to v.
Simulation Results

<table>
<thead>
<tr>
<th>n</th>
<th>Failed</th>
<th>Rounds</th>
<th>Failed</th>
<th>Rounds</th>
<th>Failed</th>
<th>Rounds</th>
<th>Failed</th>
<th>Rounds</th>
<th>Failed</th>
<th>Rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>0</td>
<td>12.504</td>
<td>0</td>
<td>23.352</td>
<td>1000</td>
<td>17.037</td>
<td>1000</td>
<td>10.773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20000</td>
<td>0</td>
<td>12.594</td>
<td>0</td>
<td>23.433</td>
<td>1000</td>
<td>19.028</td>
<td>1000</td>
<td>11.928</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40000</td>
<td>0</td>
<td>12.791</td>
<td>0</td>
<td>23.343</td>
<td>1000</td>
<td>20.961</td>
<td>1000</td>
<td>12.992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80000</td>
<td>0</td>
<td>12.939</td>
<td>0</td>
<td>23.372</td>
<td>1000</td>
<td>22.959</td>
<td>1000</td>
<td>14.104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160000</td>
<td>0</td>
<td>12.983</td>
<td>0</td>
<td>23.421</td>
<td>1000</td>
<td>25.066</td>
<td>1000</td>
<td>15.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>320000</td>
<td>0</td>
<td>13.000</td>
<td>0</td>
<td>23.491</td>
<td>1000</td>
<td>27.089</td>
<td>1000</td>
<td>16.305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>640000</td>
<td>0</td>
<td>13.000</td>
<td>0</td>
<td>23.564</td>
<td>1000</td>
<td>29.281</td>
<td>1000</td>
<td>17.334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1280000</td>
<td>0</td>
<td>13.000</td>
<td>0</td>
<td>23.716</td>
<td>1000</td>
<td>31.037</td>
<td>1000</td>
<td>18.499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2560000</td>
<td>0</td>
<td>13.000</td>
<td>0</td>
<td>23.840</td>
<td>1000</td>
<td>33.172</td>
<td>1000</td>
<td>19.570</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Results from simulations of parallel peeling process on random 4-uniform hypergraphs with n nodes and $c*n$ edges using $k = 2$.
- Averaged over 1000 trials.
- Recall that $c_{2,4} \approx 0.772$.
Refined Result: Mind the Gap

Theorem 7.1. Let $v = |c_{k,r}^* - c|$ for constant c with $c < c_{k,r}$. With probability $1 - o(1)$, peeling in $G_{n,cn}^r$ requires $\Theta(\sqrt{1/v}) + \frac{1}{\log((k-1)(r-1))} \log \log n$ rounds when c is below the threshold density $c_{k,r}^*$.

Summary: below the threshold, the additive term is $\Theta(1/\sqrt{|\text{gap}|})$. This can be more important than the $\log \log n$ term if the edge density is close to the threshold!
Plots show expected progress of the peeling process as a function of the round i, for values of the edge density c approaching the threshold value of $c_{2,4} \approx 0.772$.
Refined Analysis: Mind the Gap

• Analysis shows that peeling process falls into three “stages”.
 • First stage: the fraction of surviving nodes falls very quickly as a function of the rounds until it gets close to a certain key value x^*.
 • Second stage: $\Theta\left(1/\sqrt{|\text{gap}|}\right)$ rounds are required to go from “close” to x^* to “significantly below” x^*.
 • Third stage: the analysis of the basic upper bound kicks in, and the fraction of surviving nodes falls doubly-exponentially quickly.
Implementation Issues
GPU Experimental Results

Table 3: Results of our parallel and serial IBLT implementations with $r = 3$ hash functions. The table load refers to the ratio of the number of items in the IBLT to the number of cells in the IBLT.

<table>
<thead>
<tr>
<th>Table Load</th>
<th>No. Table Cells</th>
<th>% Recovered</th>
<th>GPU Recovery Time</th>
<th>Serial Recovery Time</th>
<th>GPU Insert Time</th>
<th>Serial Insert Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>16.8 million</td>
<td>100%</td>
<td>0.33 s</td>
<td>6.37 s</td>
<td>0.31 s</td>
<td>3.91 s</td>
</tr>
<tr>
<td>0.83</td>
<td>16.8 million</td>
<td>50.1%</td>
<td>0.42 s</td>
<td>3.64 s</td>
<td>0.35 s</td>
<td>4.34 s</td>
</tr>
</tbody>
</table>

Table 4: Results of our parallel and serial IBLT implementations with $r = 4$ hash functions. The table load refers to the ratio of the number of items in the IBLT to the number of cells in the IBLT.

Summary of results. Relative to our serial implementation, our GPU implementation achieves 10x-12x speedups for the insertion/deletion phase, and 20x speedups for the recovery stage when the edge density of the hypergraph is below the threshold for successful recovery (i.e. empty 2-core). When the edge density is slightly above the threshold for successful recovery, our parallel recovery implementation was only about 7x faster than our serial implementation. The reasons for this are two-fold. Firstly, above the threshold, many more rounds of the parallel peeling process were necessary before the 2-core was found. Secondly, above the threshold, less work was required of the serial implementation because fewer items were recovered; in contrast, the parallel implementation examines every cell in every round.

Our detailed experimental results are given in Tables 3 (for the case of $r = 3$ hash functions) and 4 (for the case of $r = 4$ hash functions). The timing results are averages over 10 trials each. For the GPU implementation, the reported times do count for the time to transfer data (i.e. the items to be inserted) from the CPU to the GPU.

The reported results are for a fixed IBLT size, consisting of 2^{24} cells. These results are representative for all sufficiently large input sizes: once the number of IBLT cells is larger than about 2^{19}, the runtime of our parallel implementation grows roughly linearly with the number of table cells (for any fixed table load). Here, table load refers to the ratio of the number of items in the IBLT to the number of cells in the IBLT. This corresponds to the edge density c in the corresponding hypergraph. The linear increase in runtime above a certain input size is typical, and is due to the fact that there is a finite number of threads that the GPU can launch at any one time.

7 Rounds as a Function of the Distance from the Threshold

Recall that the hidden constant in the $O\left(\frac{1}{n}\right)$ term of Theorem 1 depends on the size of the “gap” $n = c_{\ast}k^{r}c$, between the edge density and the threshold density. This term can be significant in practice when n is small, and in this section, we make the dependence on n explicit. Specifically, we extend the analysis of Section 3 to characterize how the growth of the number of rounds depends on $c_{\ast}k^{r}c$, when c is a constant with $c < c_{\ast}k^{r}c$. The proof of Theorem 5 below is in Appendix C.

Theorem 5. Let $n = |c_{\ast}k^{r}c|$ for constant c with $c < c_{\ast}k^{r}c$. With probability $1 - o\left(\frac{1}{n}\right)$, peeling in $G_{r,n,c}$ requires $Q\left(\frac{1}{n}\right) + 1 + \log\left(\frac{k-1}{r-1}\right)\log\log n$ rounds when c is below the threshold density $c_{\ast}k^{r}c$.

17
Recall: IBLTs

Each stream item hashed to \(r \) cells (using \(r \) different hash functions)

Insert(\(x \)): For each of the \(j \) cells that \(x \) is hashed to:
- Add key to KeySum
- Increment Count

Delete(\(x \)): For each of the \(j \) cells \(x \) is hashed to:
- Subtract key from keysum
- Decrement Count
Recall: IBLT Listing Algorithm

- Call a cell “pure” if its count equals 1.
- While there exists a pure cell:
 - Output $x = \text{keySum}$ of the cell.
 - Call $\text{Delete}(x)$ on the IBLT.
GPU Implementation

• Each cell gets a thread.
• Each cell checks if it is pure.
 • If so, identify the key it contains and remove it from other cells in the IBLT.
 • Do this by subtracting out values in other cells.
• Issue: repeated deletion.
 • Several cells might recover and try to remove the same key in the same round. So a key gets deleted more than once!
Dealing with Repeated Deletion

- To avoid this: use r subtables, such that the ith hash function only hashes into subtable i.
 - Break the listing algorithm into serial subrounds. In ith subround, recover only from the ith subtable.
 - Avoids repeated deletions, since each item will be hashed to just 1 cell in each subtable.
 - Leads to interesting variation in the analysis.
- Subrounds increase runtime, since they must happen sequentially.
 - Naively, they may blow up runtime by a factor of r.
 - But we show this does not happen.
 - Gains in one subround can help later subrounds.
 - We show runtime only blows up by a factor of about $\log_2(r-1)$.
- Analysis is similar to Vöcking’s d-left scheme.
 - Fibonacci numbers show up!
Subround Result

Theorem B.1. Let \(r \geq 3 \) and \(k \geq 2 \). Let \(\phi_{r-1} = \lim_{k \to \infty} F_{r-1}^{1/k}(k) \) be the asymptotic growth rate for the Fibonacci sequence of order \(r - 1 \). Let \(G \) be a hypergraph over \(n \) nodes with \(cn \) edges generated according to the following random process. The vertices of \(G \) are partitioned into \(r \) subsets of equal size, and the edges are generated at random subject to the constraint that each edge contains exactly one vertex from each set.

With probability \(1 - o(1) \), the peeling process for the \(k \)-core in \(G \) that uses \(r \) subrounds in each round terminates after

\[
\frac{1}{r \log \phi_{r-1} + \log(k-1)} \log \log n + O(1)
\]

rounds when \(c < c^*_{k,r} \).

Summary: use of \(r \) subtables increase constant factor in front of the \(\log \log n \), but by much less than a factor of \(r \).
Conclusion

- Peeling gives simple, fast greedy algorithms.
 - Usually linear or quasi-linear total work.
- Particularly well suited for parallelization.
 - Especially when aiming for an empty k-core.
- Implementation leads to interesting variation in the analysis.
 - Subrounds.
- Can analyze dependence on “gap” to the threshold.
Thank you!
Example 1: LDPC Codes for Erasure Channels
Example 1: LDPC Codes for Erasure Channels

How does an LDPC code encode an 8-bit message $m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8$?
Example 1: LDPC Codes for Erasure Channels

How does an LDPC code encode an 8-bit message $m_1 m_2 m_3 m_4 m_5 m_6 m_7 m_8$?

$r_1 = \text{XOR}(m_1, m_3, m_5)$
$r_2 = \text{XOR}(m_2, m_3, m_6)$
$r_3 = \text{XOR}(m_1, m_6, m_8)$
$r_4 = \text{XOR}(m_2, m_5, m_7)$
$r_5 = \text{XOR}(m_4, m_7, m_8)$
Example 1: LDPC Codes for Erasure Channels

c_1c_2c_3c_4c_5c_6c_7c_8c_9c_{10}c_{11}c_{12}c_{13} → Erasure Channel → c_1?c_3c_4c_5?c_7?c_9c_{10}c_{11}c_{12}?

Erasure Channel

m_1 m_2 m_3 m_4 m_5 m_6 m_7 m_8 → Erasure Channel → m_1 ? m_3 m_4 m_5 ? m_7 ?
Example 1: LDPC Codes for Erasure Channels

Decoding Algorithm:
While there exists an un-erased a parity-check bit with exactly one un-erased neighbor:
Recover the neighbor
Example 1: LDPC Codes for Erasure Channels

Decoding Algorithm:
While there exists an un-erased parity-check bit with exactly one un-erased neighbor:
Recover the neighbor
Example 1: LDPC Codes for Erasure Channels

Decoding Algorithm:
While there exists an un-erased a parity-check bit with exactly one un-erased neighbor:
Recover the neighbor
Example 1: LDPC Codes for Erasure Channels

Decoding Algorithm:
While there exists an un-erased a parity-check bit with exactly one un-erased neighbor:
 Recover the neighbor
Example 1: LDPC Codes for Erasure Channels

Decoding Algorithm:
While there exists an un-erased a parity-check bit with exactly one un-erased neighbor:
Recover the neighbor
Example 1: LDPC Codes for Erasure Channels

Decoding Algorithm:
While there exists an un-erased a parity-check bit with exactly one un-erased neighbor:
Recover the neighbor
Example 1: LDPC Codes for Erasure Channels

Decoding Algorithm:
While there exists an un-erased a parity-check bit with exactly one un-erased neighbor:
Recover the neighbor
Example 1: LDPC Codes for Erasure Channels

- Decoding \Rightarrow peeling to 2-core on the hypergraph G where:
 - Parity-check bits \Rightarrow vertices of G,
 - Erased message bits \Rightarrow hyperedges of G.
- Yields capacity-achieving codes with linear encoding and decoding time [Luby, Mitzenmacher, Shokrollahi, Spielman]