

 Streaming Algorithms for Set Cover

Piotr Indyk
With: Sepideh Mahabadi, Ali Vakilian

Set Cover

• Input: a collection S of sets S1...Sm that covers
U={1...n}
– I.e., S1  S2 ….  Sm = U

• Output: a subset I of S such that:
– I covers U
– |I| is minimized

• Classic optimization problem:
– NP-hard
– Greedy ln(n)-approximation algorithm
– Can’t do better unless P=NP (or something like that)

Streaming Set Cover [SG09]

• Model

– Sequential access to S1, S2, …., Sm

– One (or few) passes, sublinear (i.e., o(mn)) storage

– (Hopefully) decent approximation factor

• Why ?

– A classic optimization problem (see previous slide)

– Several ``big data’’ uses

– One of few NP-hard problems studied in streaming

• Other examples: max-cut, sub-modular opt, FPT

The ``Big Table’’
Result Approximation Passes Space R/D

Greedy ln(n) 1 O(mn) D

Greedy ln(n) n O(n) D

[SG09] O(logn) O(logn) O(n logn) D

[ER14] O(n1/2) 1 O˜(n) D

[DIMV14] O(41/δ ρ) O(41/δ) O˜(mnδ) R

[CW] nδ /δ 1/δ−1 Θ˜(n) D

[Nis02] log(n)/2 O(logn) Ω(m) R

[DIMV14] O(1) O(logn) Ω(mn) D

[IMV] O(ρ/δ) O(1/δ) O˜(mnδ) R

[IMV] 1 1/2δ−1 Ω~(mnδ) R

[IMV] 1 1/2δ−1 Ω~(ms) R

[IMV] 3/2 1 Ω(mn) R

A few observations: algorithms

• Most of the algorithms are deterministic

• All of the algorithms are ``clean’’

Greedy ln(n) 1 O(mn) D

Greedy ln(n) n O(n) D

[SG09] O(logn) O(logn) O(n logn) D

[ER14] O(n) 1 O˜(n) D

[DIMV14] O(41/δ ρ) O(41/δ) O˜(mnδ) R

[CW] nδ /δ 1/δ−1 Θ˜(n) D

[IMV] O(ρ/δ) O(1/δ) O˜(mnδ) R

A few observations: lower bounds

[Nis02] log(n)/2 O(logn) Ω(m) R

[DIMV14] O(1) O(logn) Ω(mn) D

[CW] nδ /δ 1/δ−1 Θ˜(n) D

[IMV] 1 1/2δ−1 Ω~(mnδ) R

[IMV] 3/2 1 Ω(mn) R

Algorithm

• Approach: “dimensionality reduction”

– Covers all but 1/nδ fraction of elements using ρ*k
sets (k=min cover size)

– Uses O~(mnδ) space

– Two passes

• Repeat O(1/δ) times:

– O(1/δ) passes

– O(ρ/δ) approximation

[IMV] O(ρ/δ) O(1/δ) O˜(mnδ) R

Dimensionality reduction:

• Suppose we know k=min cover size
• Pass 1:

– For each set Si , select Si if it covers Ω(n/k) elements
– Compute V=set of elements not covered by selected sets
– Fact: each not-selected set covers O(n/k) elements in V

• Select a set R of knδ log m random elements from V
• Pass 2:

– Store all sets projected on R
– Compute a ρ-approximate set cover I’
– Fact [DIMV14, KMVV13]: I’ covers all but 1/nδ fraction of V

• Report sets found in Pass 1 and Pass 2

• Covers all but 1/nδ fraction of
elements

• Uses mnδ space
• Two passes

• Suppose we know k=min cover size
• Pass 1:

– For each set Si , select Si if it covers Ω(n/k) elements
– Compute V=set of elements not covered by selected sets
– Fact: each not-selected set covers O(n/k) elements in V

• Select a set R of knδ log m random elements from V
• Pass 2:

– Store all sets projected on R
– Compute a ρ-approximate set cover I’
– Fact [DIMV14, KMVV13]: I’ covers all but 1/nδ fraction of V

• Report sets found in Pass 1 and Pass 2

Dimensionality reduction: space
accounting

* log n

n

 m*(n/k)*|R|/n
=m*nδ log m

Lower bound: single pass

• Have seen that O(1) passes can reduce space
requirements

• What can(not) be done in one pass ?

• We show that distinguishing between k=2 and
k=3 requires Ω(mn) space

[IMV] 3/2 1 Ω(mn) R

Proof Idea

• Two sets cover U iff their complements are
disjoint

• Consider two following one-way
communication complexity problem:
– Alice: sets S1…Sm

– Bob: set S

– Question: is S disjoint from one of Si’s ?

• Lemma: the randomized one way c.c. of this
problem is Ω(mn) if error prob. is 1/poly(m)

Proof idea ctd.

• Lemma: the one way c.c. of this problem is
Ω(mn) if error prob. is 1/poly(m).

• Proof:

– Suppose Si’s are selected uniformly at random

– We show that there exist poly(m) sets S such if
Bob learns answers to all of them, he can recover
all Si’s with high probability

Proof idea ctd.

• Bob’s queries:
– poly(m) random “seed” queries of size

c log m for some constant c>0
– For each sees query S, all “extension”

queries of the form S  {i}

• Recovery procedure
– Suppose that a seed S is disjoint from

exactly one Si (we do not know which one)
• Call it a ``good seed’’ for Si

– Then extension queries recover the
complement of Si

• poly(m) queries suffice to generate a
good seed for each Si

Lower bound: multipass

• Reduction from Intersection Set Chasing
[Guruswami-Onak’13]

• Very “brittle”, hence works only for the exact
problem

[IMV] 1 1/2δ−1 Ω~(mnδ) R

[IMV] 1 1/2δ−1 Ω~(ms) R

Conclusions
Result Approximation Passes Space R/D

Greedy ln(n) 1 O(mn) D

Greedy ln(n) n O(n) D

[SG09] O(logn) O(logn) O(n logn) D

[ER14] O(n1/2) 1 O˜(n) D

[DIMV14] O(41/δ ρ) O(41/δ) O˜(mnδ) R

[CW] nδ /δ 1/δ−1 Θ˜(n) D

[Nis02] log(n)/2 O(logn) Ω(m) R

[DIMV14] O(1) O(logn) Ω(mn) D

[IMV] O(ρ/δ) O(1/δ) O˜(mnδ) R

[IMV] 1 1/2δ−1 Ω~(mnδ) R

[IMV] 1 1/2δ−1 Ω~(ms) R

[IMV] 3/2 1 Ω(mn) R

