Optimisation While Streaming

Amit Chakrabarti

Dartmouth College

Joint work with S. Kale, A. Wirth

DIMACS Workshop on Big Data
Through the Lens of Sublinear Algorithms, Aug 2015
Combinatorial Optimisation Problems

- 1950s, 60s: Operations research
- 1970s, 80s: NP-hardness
- 1990s, 2000s: Approximation algorithms, hardness of approximation
- 2010s: Space-constrained settings, e.g., streaming
Maximum Matching
Maximum Matching

The cardinality version
Maximum Matching
Maximum Matching

The weighted version
Maximum cardinality matching (MCM)

- Input: stream of edges \((u, v) \in [n] \times [n]\)
- Describes graph \(G = (V, E)\): \(n\) vertices, \(m\) edges, undirected, simple
- Each edge appears exactly once in stream
- Goal
 - Output a matching \(M \subseteq E\), with \(|M|\) maximal
Maximum cardinality matching (MCM)

- Input: stream of edges \((u, v) \in [n] \times [n]\)
- Describes graph \(G = (V, E)\): \(n\) vertices, \(m\) edges, undirected, simple
- Each edge appears exactly once in stream
- Goal
 - Output a matching \(M \subseteq E\), with \(|M|\) maximal
 - Use sublinear (in \(m\)) working memory
 - Ideally \(O(n \text{ polylog } n)\) ... “semi-streaming”
 - Need \(\Omega(n \log n)\) to store \(M\)
Maximum cardinality matching (MCM)

- Input: stream of edges \((u, v) \in [n] \times [n]\)
- Describes graph \(G = (V, E)\): \(n\) vertices, \(m\) edges, undirected, simple
- Goal: output a matching \(M \subseteq E\), with \(|M|\) maximal

Maximum weight matching (MWM)

- Input: stream of weighted edges \((u, v, w_{uv}) \in [n] \times [n] \times \mathbb{R}^+\)
- Goal: output matching \(M \subseteq E\), with \(w(M) = \sum_{e \in M} w(e)\) maximal
Graph Streams: Maximum Matching, Generalisations

Maximum cardinality matching (MCM)

▸ Input: stream of edges \((u, v) \in [n] \times [n]\)
▸ Describes graph \(G = (V, E): n\) vertices, \(m\) edges, undirected, simple
▸ Goal: output a matching \(M \subseteq E\), with \(|M|\) maximal

Maximum weight matching (MWM)

▸ Input: stream of weighted edges \((u, v, w_{uv}) \in [n] \times [n] \times \mathbb{R}^+\)
▸ Goal: output matching \(M \subseteq E\), with \(w(M) = \sum_{e \in M} w(e)\) maximal

Maximum submodular-function matching (MSM) [Chakrabarti-Kale’14]

▸ Input: unweighted edges \((u, v)\), plus submodular \(f : 2^E \rightarrow \mathbb{R}^+\)
▸ Goal: output matching \(M \subseteq E\), with \(f(M)\) maximal
Set Cover
Set Cover with Sets Streamed

- Input: stream of m sets, each $\subseteq [n]$
- Goal: cover universe $[n]$ using as few sets as possible
Set Cover with Sets Streamed

- Input: stream of m sets, each $\subseteq [n]$
- Goal: cover universe $[n]$ using as few sets as possible
 - Use sublinear (in m) space
 - Ideally $O(n \text{ polylog } n)$... “semi-streaming”
 - Need $\Omega(n \log n)$ space to certify: for each item, who covered it?

Think $m \geq n$
Road Map

- Results on Maximum Submodular Matching (MSM)
- Generalising MSM: constrained submodular maximisation
- Set Cover: upper bounds
- Set Cover: lower bounds, with proof outline
Maximum Submodular Matching

Input

- Stream of edges \(\sigma = \langle e_1, e_2, \ldots, e_m \rangle \)
- Valuation function \(f : 2^E \rightarrow \mathbb{R}^+ \)
 - Submodular:
 \[X \subseteq Y \subseteq E, e \in E \implies f(X + e) - f(X) \geq f(Y + e) - f(Y) \]
 - Monotone:
 \[X \subseteq Y \implies f(X) \leq f(Y) \]
 - Normalised:
 \[f(\emptyset) = 0 \]
- Oracle access to \(f \): query at \(X \subseteq E \), get \(f(X) \)
 - May only query at \(X \subseteq \) (stream so far)

Goal

- Output matching \(M \subseteq E \), with \(f(M) \) maximal “large”
- Store \(O(n) \) edges and \(f \)-values
Some Results on MSM

Can’t solve MSM exactly

- MCM, approx $< \frac{e}{e-1}$ \implies space $\omega(n \text{ polylog } n)$ [Kapralov’13]
- Offline MSM, approx $< \frac{e}{e-1}$ \implies $n^{\omega(1)}$ oracle calls
 - Via cardinality-constrained submodular max [Nemhauser-Wolsey’78]
Some Results on MSM

Can’t solve MSM exactly

- MCM, approx $< \frac{e}{e-1} \implies$ space $\omega(n \text{ polylog } n)$ [Kapralov’13]
- Offline MSM, approx $< \frac{e}{e-1} \implies n^{\omega(1)}$ oracle calls
 - Via cardinality-constrained submodular max [Nemhauser-Wolsey’78]

Positive results, using $O(n)$ storage:

- **Theorem 1** MSM, one pass: 7.75-approx
- **Theorem 2** MSM, $(3 + \varepsilon)$-approx in $O(e^{-3})$ passes
Some Results on MSM

Can’t solve MSM exactly

- MCM, approx \(< \frac{e}{e - 1} \implies \text{space } \omega(n \text{ polylog } n) \) \quad [Kapralov’13]
- Offline MSM, approx \(< \frac{e}{e - 1} \implies n^{\omega(1)} \text{ oracle calls} \)
 - Via cardinality-constrained submodular max \quad [Nemhauser-Wolsey’78]

Positive results, using \(O(n) \) storage:

- **Theorem 1** MSM, one pass: 7.75-approx
- **Theorem 2** MSM, \((3 + \varepsilon)\)-approx in \(O(e^{-3}) \) passes

More importantly:

- **Meta-Thm 1** Every compliant MWM approx alg \(\rightarrow \) MSM approx alg
Some Results on MSM

Can’t solve MSM exactly

- MCM, approx $< \frac{e}{e-1} \implies$ space $\omega(n \text{polylog } n)$ [Kapralov'13]
- Offline MSM, approx $< \frac{e}{e-1} \implies n^{\omega(1)}$ oracle calls
 - Via cardinality-constrained submodular max [Nemhauser-Wolsey’78]

Positive results, using $O(n)$ storage:

Theorem 1 MSM, one pass: 7.75-approx

Theorem 2 MSM, $(3 + \varepsilon)$-approx in $O(e^{-3})$ passes

More importantly:

Meta-Thm 1 Every *compliant* MWM approx alg \rightarrow MSM approx alg

Meta-Thm 2 Similarly, max weight *independent* set (MWIS) \rightarrow MSIS
Compliant Algorithms for MWM

Maintain "current solution" M, update if new edge improves it sufficiently
Maintain "current solution" M, update if new edge improves it sufficiently.
Maintain “current solution” M, update if new edge improves it sufficiently.
Compliant Algorithms for MWM: Details

Update of “current solution” \(M \)

- Given new edge \(e \), pick “augmenting pair” \((A, J)\)
 - \(A \leftarrow \{e\} \)
 - \(J \leftarrow M \cap A \) ... edges in \(M \) that conflict with \(A \)
 - Ensure \(w(A) \geq (1 + \gamma)w(J) \)
- Update \(M \leftarrow (M \setminus J) \cup A \)

Choice of gain parameter

- \(\gamma = 1\), approx factor 6 \[\text{Feigenbaum-K-M-S-Z’05}\]
- \(\gamma = 1/\sqrt{2} \), approx factor 5.828 \[\text{McGregor’05}\]

Choice of gain parameter

- \(\gamma = 1\), approx factor 6 \[\text{Feigenbaum-K-M-S-Z’05}\]
- \(\gamma = 1/\sqrt{2} \), approx factor 5.828 \[\text{McGregor’05}\]
Compliant Algorithms for MWM: Details

Update of “current solution” M

- Given new edge e, pick “augmenting pair” (A, J)
 - $A \leftarrow \{e\}$ $A \leftarrow$ “best” subset of 3-neighbourhood of e
 - $J \leftarrow M \cap A$... edges in M that conflict with A
 - Ensure $w(A) \geq (1 + \gamma)w(J)$
- Update $M \leftarrow (M \setminus J) \cup A$

Choice of gain parameter

- $\gamma = 1$, approx factor 6 [Feigenbaum-K-M-S-Z’05]
- $\gamma = 1/\sqrt{2}$, approx factor 5.828 [McGregor’05]
- $\gamma = 1.717$, approx factor 5.585 [Zelke’08]
Update of “current solution” M + pool of “shadow edges” S

- Given new edge e, pick “augmenting pair” (A, J)
 - $A \leftarrow \{e\}$
 - $A \leftarrow$ “best” subset of 3-neighbourhood of e
 - $J \leftarrow M \cap A$... edges in M that conflict with A
 - Ensure $w(A) \geq (1 + \gamma)w(J)$

- Update $M \leftarrow (M \setminus J) \cup A$
- Update $S \leftarrow$ appropriate subset of $(S \setminus A) \cup J$

Choice of gain parameter

- $\gamma = 1$, approx factor 6
 [Feigenbaum-K-M-S-Z’05]
- $\gamma = 1/\sqrt{2}$, approx factor 5.828
 [McGregor’05]
- $\gamma = 1.717$, approx factor 5.585
 [Zelke’08]
1: **procedure** `Process-Edge(e, M, S, γ)`
2:
3: \((A, J) \leftarrow \) a well-chosen augmenting pair for \(M\)
 \[\text{with } A \subseteq M \cup S + e, \ w(A) \geq (1 + \gamma)w(J)\]
4: \(M \leftarrow (M \setminus J) \cup A\)
5: \(S \leftarrow \) a well-chosen subset of \((S \setminus A) \cup J\)

MWM alg \(A + \) submodular \(f \rightarrow\) MSM alg \(A^f\) (the \(f\)-extension of \(A\))
Generic Compliant Algorithm and f-Extension for MSM

1: **procedure** $\text{Process-Edge}(e, M, S, \gamma)$
2: \quad $w(e) \leftarrow f(M \cup S + e) - f(M \cup S)$
3: \quad $(A, J) \leftarrow$ a well-chosen augmenting pair for M
 \quad with $A \subseteq M \cup S + e$, $w(A) \geq (1 + \gamma)w(J)$
4: \quad $M \leftarrow (M \setminus J) \cup A$
5: \quad $S \leftarrow$ a well-chosen subset of $(S \setminus A) \cup J$

MWM alg \mathcal{A} + submodular $f \rightarrow$ MSM alg \mathcal{A}^f (the f-extension of \mathcal{A})
1: **procedure** \text{Process-Edge}(e, M, S, \gamma)

2: \hspace{1em} w(e) \leftarrow f(M \cup S + e) - f(M \cup S)

3: \hspace{1em} (A, J) \leftarrow \text{a well-chosen augmenting pair for } M \\
 \hspace{2em} \text{with } A \subseteq M \cup S + e, \quad w(A) \geq (1 + \gamma)w(J)

4: \hspace{1em} M \leftarrow (M \setminus J) \cup A

5: \hspace{1em} S \leftarrow \text{a well-chosen subset of } (S \setminus A) \cup J

MWM alg \mathcal{A} + \text{submodular } f \rightarrow \text{MSM alg } \mathcal{A}^f \text{ (the } f\text{-extension of } \mathcal{A})

MWIS (arbitrary ground set } E, \text{ independent sets } \mathcal{I} \subseteq 2^E \text{) } + f \rightarrow \text{MSIS}
Generalise: Submodular Maximization (MWIS, MSIS)

1: **procedure** `Process-Element(e, I, S, γ)`
2: \[w(e) \leftarrow f(I \cup S + e) - f(I \cup S) \]
3: \[(A, J) \leftarrow \text{a well-chosen augmenting pair for } I \]
 \[\text{with } A \subseteq I \cup S + e, \ w(A) \geq (1 + γ)w(J) \]
4: \[I \leftarrow (I \setminus J) \cup A \]
5: \[S \leftarrow \text{a well-chosen subset of } (S \setminus A) \cup J \]

MWM alg \(\mathcal{A} + \text{submodular } f \rightarrow \text{MSM alg } \mathcal{A}^f \) (the \(f \)-extension of \(\mathcal{A} \))
MWIS (arbitrary ground set \(E \), independent sets \(\mathcal{I} \subseteq 2^E \)) + \(f \rightarrow \text{MSIS} \)
Further Applications: Hypermacthings

Stream of hyperedges $e_1, e_2, \ldots, e_m \subseteq [n]$, each $|e_i| \leq p$

Hypermatching = subset of pairwise disjoint edges
Further Applications: Hypermatchings

Stream of hyperedges $e_1, e_2, \ldots, e_m \subseteq [n]$, each $|e_i| \leq p$

Hypermatching = subset of pairwise disjoint edges

Multi-pass MSM algorithm (compliant)

- Augment using only current edge e
- Use $\gamma = 1$ for first pass, $\gamma = \varepsilon/(p + 1)$ subsequently
- Make passes until solution doesn’t improve much

Results

- $4p$-approx in one pass
- $(p + 1 + \varepsilon)$-approx in $O(\varepsilon^{-3})$ passes
Further Applications: Maximization Over Matroids

Stream of elements \(e_1, e_2, \ldots, e_m \) from ground set \(E \)
Matroids \((E, \mathcal{I}_1), \ldots, (E, \mathcal{I}_p) \), given by circuit oracles:

Given \(A \subseteq E \), returns
\[
\begin{cases}
\emptyset, & \text{if } A \in \mathcal{I}_i \\
\text{a circuit in } A, & \text{otherwise}
\end{cases}
\]

Independent sets, \(\mathcal{I} = \bigcap_i \mathcal{I}_i \); size parameter \(n = \max_{I \in \mathcal{I}} |I| \)
Further Applications: Maximization Over Matroids

Stream of elements e_1, e_2, \ldots, e_m from ground set E
Matroids $(E, I_1), \ldots, (E, I_p)$, given by circuit oracles:

Given $A \subseteq E$, returns \begin{cases} \emptyset, & \text{if } A \in I_i \\ \text{a circuit in } A, & \text{otherwise} \end{cases}

Independent sets, $I = \bigcap_i I_i$; size parameter $n = \max_{I \in I} |I|$
Recent MWIS algorithm (compliant) [Varadaraja’11]

- Augment using only current element e
- Remove $J = \{x_1, \ldots, x_p\}$,
 where $x_i := \text{lightest element in circuit formed in } i\text{th matroid}$
Further Applications: Maximization Over Matroids

Stream of elements e_1, e_2, \ldots, e_m from ground set E

Independent sets, $\mathcal{I} = \bigcap_i \mathcal{I}_i$; size parameter $n = \max_{I \in \mathcal{I}} |I|$

Recent MWIS algorithm (compliant) [Varadaraja’11]

- Augment using only current element e
- Remove $J = \{x_1, \ldots, x_p\}$,
 where $x_i :=$ lightest element in circuit formed in ith matroid
Further Applications: Maximization Over Matroids

Stream of elements e_1, e_2, \ldots, e_m from ground set E

Independent sets, $\mathcal{I} = \bigcap_i \mathcal{I}_i$; size parameter $n = \max_{I \in \mathcal{I}} |I|$

Recent MWIS algorithm (compliant) \cite{Varadaraja'11}

- Augment using only current element e
- Remove $J = \{x_1, \ldots, x_p\}$, where $x_i :=$ lightest element in circuit formed in ith matroid

Follow paradigm: use f-extension of above algorithm

Results, using $O(n)$ storage

- $4p$-approx in one pass
- $(p + 1 + \varepsilon)$-approx in $O(\varepsilon^{-3})$ passes *

* Multi-pass analysis only works for partition matroids
Road Map

- Results on Maximum Submodular Matching (MSM) ✓
- Generalising MSM: constrained submodular maximisation ✓
- Set Cover: upper bounds
- Set Cover: lower bounds, with proof outline
Offline results:

- Best possible poly-time approx $(1 \pm o(1)) \ln n$ [Johnson’74] [Slavík’96] [Lund-Yannakakis’94] [Dinur-Steurer’14]
- Simple greedy strategy gets $\ln n$-approx:
 - Repeatedly add set with highest contribution
 - Contribution := number of new elements covered

Streaming results:

- One pass semi-streaming $O(\sqrt{n})$-approx [Emek-Rosén’14]
- This is best possible in a single pass
- (More results in Indyk’s talk)
Set Cover: Our Results

Upper bound

- With p passes, semi-streaming space, get $O(n^{1/(p+1)})$-approx
- Algorithm giving this approx based on very simple heuristic
- Deterministic

Lower bound

- Randomized
- In p passes, semi-streaming space, need $\Omega(n^{1/(p+1)/p^2})$ space.
- Upper bound tight for all constant p
- Semi-streaming $O(\log n)$ approx requires $\Omega(\log n/\log \log n)$ passes

[Chakrabarti-Wirth’15]
Progressive Greedy Algorithm

1: procedure GreedyPass(stream σ, threshold τ, set Sol, array $Coverer$)
2: for all (i, S) in σ do
3: $C \leftarrow \{x : Coverer[x] \neq 0\}$ ▷ the already covered elements
4: if $|S \setminus C| \geq \tau$ then
5: $Sol \leftarrow Sol \cup \{i\}$
6: for all $x \in S \setminus C$ do $Coverer[x] \leftarrow i$

7: procedure ProGreedyNaive(stream σ, integer n, integer $p \geq 1$)
8: $Coverer[1 \ldots n] \leftarrow 0^n$; $Sol \leftarrow \emptyset$
9: for $j = 1$ to p do GreedyPass(σ, $n^{1-j/p}$, Sol, $Coverer$)
10: output Sol, $Coverer$
Progressive Greedy: Analysis Idea

Consider $p = 2$ passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol

But wait, this uses two passes for $O(\sqrt{n})$ approx!

Logic of last pass especially simple: add set if positive contrib

Can fold this into previous one

Final result: p passes, $O\left(\frac{n^{1/p}}{p+1}\right)$-approx
Consider $p = 2$ passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol
- Second pass: Opt cover remaining items with sets of contrib $\leq \sqrt{n}$
- Thus, Sol will cover the same using $\leq \sqrt{n} |\text{Opt}|$ sets
Progressive Greedy: Analysis Idea

Consider $p = 2$ passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol

- Second pass: Opt cover remaining items with sets of contrib $\leq \sqrt{n}$
- Thus, Sol will cover the same using $\leq \sqrt{n}|Opt|$ sets

But wait, this uses two passes for $O(\sqrt{n})$ approx!
Consider $p = 2$ passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol
- Second pass: Opt cover remaining items with sets of contrib $\leq \sqrt{n}$
- Thus, Sol will cover the same using $\leq \sqrt{n}|Opt|$ sets

But wait, this uses two passes for $O(\sqrt{n})$ approx!

- Logic of last pass especially simple: add set if positive contrib
- Can fold this into previous one

Final result: p passes, $O(n^{1/(p+1)})$-approx
Lower Bound Idea: One Pass

Reduce from **INDEX**: Alice gets $x \in \{0, 1\}^n$, Bob gets $j \in [n]$, Alice talks to Bob, who must determine x_j. Requires $\Omega(n)$-bit message. [Ablayev’96]

![Diagram showing Alice's sets and Bob's set](image)

$n = q^2$
Reduce from **INDEX**: Alice gets $x \in \{0, 1\}^n$, Bob gets $j \in [n]$, Alice talks to Bob, who must determine x_j. Requires $\Omega(n)$-bit message. [Ablayev’96]

If Alice has Bob’s *missing line*, then $|Opt| = 2$, else $|Opt| \geq q$
Lower Bound Idea: One Pass

Reduce from \textbf{INDEX}: Alice gets $x \in \{0, 1\}^n$, Bob gets $j \in [n]$, Alice talks to Bob, who must determine x_j. Requires $\Omega(n)$-bit message. [Ablayev’96]

If Alice has Bob’s \textit{missing line}, then $|Opt| = 2$, else $|Opt| \geq q$

So $\Theta(\sqrt{n})$ approx requires $\Omega(\#\text{lines}) = \Omega(n)$ space
Tree Pointer Jumping

Multiplayer game $\text{TPJ}_{p+1,t}$ defined on complete $(p+1)$-level t-ary tree

- Pointer to child at each internal level-i node (known to Player i)
- Bit at each leaf node (known to Player 1)
- Goal: output (whp) bit reached by following pointers from root

Model: p rounds of communication

Each round: (Plr 1, Plr 2, \ldots, Plr $(p+1)$)

Theorem: Longest message is $\Omega(t/p^2)$ bits [C.-Cormode-McGregor’08]
Basic idea: Generalise affine plane to high-rank Buekenhout geometry

$X_{\text{root}} = (F_q)^{p+1}$

$|X_{\text{leaf}}| \geq q$

$|X_z \cap X_v| \leq 2p$

Pointer encoded as $X_u \setminus X_v$
Basic idea: Generalise affine plane to high-rank Buekenhout geometry

\[\text{Root} = (\mathbb{F}_q)^{p+1} \]

- Universe \(\mathbb{F}_q^{p+1} \)
- Variety \(X_u \) at node \(u \)
- \(u \) above \(v \) \(\implies X_u \supseteq X_v \)

Pointer encoded as \(X_u \setminus X_v \)

- \(|X_{\text{leaf}}| \geq q\)
- \(|X_z \cap X_v| \leq 2p\)
Basic idea: Generalise affine plane to high-rank Buekenhout geometry

\[X_{\text{root}} = (F_q)^{p+1} \]

- Universe \(\mathbb{F}^{p+1}_q \)
- Variety \(X_u \) at node \(u \)
- \(u \) above \(v \)
 \(\implies X_u \supseteq X_v \)
- Leaf \(z \) with bit \(= 1 \)
 encoded as set \(X_z \)

\[|X_{\text{leaf}}| \geq q \]
\[|X_z \cap X_v| \leq 2p \]
Basic idea: Generalise affine plane to high-rank Buekenhout geometry

- Universe \mathbb{F}_q^{p+1}
- Variety X_u at node u
- u above v \[\implies X_u \supseteq X_v \]
- Leaf z with bit = 1 encoded as set X_z
- If player 1 has the *missing variety*, then $|Opt| = p + 1$, else $|Opt| \geq q/(2p)$
Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is the stuff of difficult mathematics.
Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

- Coordinates $\langle x, y_1, y_2, \ldots, y_p \rangle$
- Equation at each edge of tree; at level i:
 $$y_i = a_1 y_1 + \cdots + a_{i-1} y_{i-1} + a_i f_{p+1-i}(x)$$
 $$f_j(x) = \text{monic poly in } \mathbb{F}_q[x] \text{ of degree } p + j$$

- Variety X_u defined by equations on root-to-u path
Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

- Coordinates $\left(x, y_1, y_2, \ldots, y_p \right)$
- Equation at each edge of tree; at level i:

\[
y_i = a_1 y_1 + \cdots + a_{i-1} y_{i-1} + a_i f_{p+1-i}(x) \\
f_j(x) = \text{monic poly in } \mathbb{F}_q[x] \text{ of degree } p + j
\]

Cardinality bound via much simpler mathematics.

- Schwartz-Zippel lemma
- Linear independence arguments via row reduction
Combinatorial optimisation: old topic, but relatively new territory for data stream algorithms

- Potential for many new research questions
- Stronger or more general results on submodular maximization? Some new work in [Chekuri-Gupta-Quanrud’15]
- Lower bounds for submodular maximization?
- Fuller understanding of possible tradeoff for set cover?