Large-scale Graph Mining @ Google NY

Vahab Mirrokni

Google Research
New York, NY

DIMACS Workshop
Large-scale graph mining

Many applications
 Friend suggestions
 Recommendation systems
 Security
 Advertising

Benefits
 Big data available
 Rich structured information

New challenges
 Process data efficiently
 Privacy limitations
Google NYC Large-scale graph mining

Develop a *general-purpose library* of graph mining tools for XXXB nodes and XT edges

via MapReduce+DHT(Flume), Pregel, ASYMP

Goals:

- Develop scalable tools (Ranking, Pairwise Similarity, Clustering, Balanced Partitioning, Embedding, etc)
- Compare different algorithms/frameworks
- Help product groups use these tools across Google in a loaded cluster (clients in Search, Ads, Youtube, Maps, Social)
- Fundamental Research (Algorithmic Foundations and Hybrid Algorithms/System Research)
Outline

Three perspectives:

• Part 1: Application-inspired Problems
 • Algorithms for Public/Private Graphs

• Part 2: Distributed Optimization for NP-Hard Problems
 • Distributed algorithms via composable core-sets

• Part 3: Joint systems/algorithms research
 • MapReduce + Distributed HashTable Service
Problems Inspired by Applications

Part 1: Why do we need scalable graph mining?

Stories:
- **Algorithms for Public/Private Graphs,**
 - How to solve a problem for each node on a public graph+its own private network
 - with Chierchetti,Epasto,Kumar,Lattanzi,M: KDD’15

- **Ego-net clustering**
 - How to use graph structures and improve collaborative filtering
 - with Epasto,Lattanzi,Sebe,Taei,Verma, Ongoing

- **Local random walks for conductance optimization,**
 - Local algorithms for finding well connected clusters
 - with Allen,Zu,Lattanzi, ICML’13
Private-Public networks

Idealistic vision
Private-Public networks

Reality

My friends are private

~52% of NYC Facebook users hide their friends

Only my friends can see my friends
Applications: friend suggestions

Network signals are very useful [CIKM03]

- Number of common neighbors
- Personalized PageRank
- Katz
Applications: friend suggestions

Network signals are very useful [CIKM03]

Number of common neighbors
Personalized PageRank
Katz

From a user’ perspective, there are interesting signals
Applications: advertising

Maximize the reachable sets

How many can be reached by re-sharing?
Applications: advertising

Maximize the reachable sets
How many can be reached by re-sharing?

More influential from global prospective
Applications: advertising

Maximize the reachable sets
How many can be reached by re-sharing?

More influential from Starbucks’ prospective
Private-Public problem

There is a public graph G in addition each node u has access to a local graph G_u.
Private-Public problem

There is a public graph G in addition each node u has access to a local graph G_u
Private-Public problem

There is a public graph G in addition each node u has access to a local graph G_u
Private-Public problem

There is a public graph G in addition each node u has access to a local graph G_u.
For each u, we like to execute some computation on $G \cup G_u$.

Private-Public problem
Private-Public problem

For each u, we like to execute some computation on $G \cup G_u$

Doing it naively is too expensive
Private-Public problem

Can we precompute data structure for G so that we can solve problems in $G \cup G_u$ efficiently?
Private-Public problem

Ideally

Preprocessing time: $\tilde{O}(|E_G|)$

Preprocessing space: $\tilde{O}(|V_G|)$

Post-processing time: $\tilde{O}(|E_{G_u}|)$
Problems Studied

(Approximation) Algorithms with provable bounds
 Reachability
 Approximate All-pairs shortest paths
 Correlation clustering
 Social affinity

Heuristics
 Personalized PageRank
 Centrality measures
Problems Studied

Algorithms
- Reachability
- Approximate All-pairs shortest paths
- Correlation clustering
- Social affinity

Heuristics
- Personalized PageRank
- Centrality measures
Part 2: Distributed Optimization

Distributed Optimization for NP-Hard Problems on Large Data Sets:

Two stories:

• Distributed Optimization via composable core-sets
 • Sketch the problem in composable instances
 • Distributed computation in constant (1 or 2) number of rounds

• Balanced Partitioning
 • Partition into ~equal parts & minimize the cut
Distributed Optimization Framework

Run ALG in each machine

Input Set N

Machine 1

T_1

S_1

Machine 2

T_2

S_2

Machine m

T_m

S_m

Selected elements

Run ALG’ to find the final size k output set

output set
Composable Core-sets

• Technique for effective distributed algorithm
 • One or Two rounds of Computation
 • Minimal Communication Complexity
 • Can also be used in Streaming Models and Nearest Neighbor Search

• Problems
 ○ Diversity Maximization
 ○ Composable Core-sets
 ○ Indyk, Mahabadi, Mahdian, Mirrokni, ACM PODS’14
 ○ Clustering Problems
 ○ Mapping Core-sets
 ○ Bateni, Bashkara, Lattanzi, Mirrokni, NIPS 2014
 ○ Submodular/Coverage Maximization:
 ○ Randomized Composable Core-sets
 ○ work by Mirrokni, ZadiMoghaddam, ACM STOC 2015
Problems considered:

General: Find a set S of k items & maximize $f(S)$.

- **Diversity Maximization**: Find a set S of k points and maximize the sum of pairwise distances i.e. $\text{diversity}(S)$.

- **Capacitated/Balanced Clustering**: Find a set S of k centers and cluster nodes around them while minimizing the sum of distances to S.

- **Coverage/submodular Maximization**: Find a set S of k items. Maximize submodular function $f(S)$.
Distributed Clustering

Clustering: Divide data into groups containing

Minimize:

\(k \)-center: \(\max_i \max_{u \in S_i} d(u, c_i) \)

\(k \)-means: \(\sum_i \sum_{u \in S_i} d(u, c_i)^2 \)

\(k \)-median: \(\sum_i \sum_{u \in S_i} d(u, c_i) \)

Metric space \((d, X) \)

\(\alpha \)-approximation algorithm: cost less than \(\alpha \times \text{OPT} \)
Distributed Clustering

Many objectives: \(k \)-means, \(k \)-median, \(k \)-center,...

minimize max cluster radius

Framework:

- Divide into chunks \(V_1, V_2, \ldots, V_m \)
- Come up with “representatives” \(S_i \) on machine \(i \ll |V_i| \)
- Solve on union of \(S_i \), others by closest rep.
Balanced/Capacitated Clustering

Theorem (Bhaskara, Bateni, Lattanzi, M. NIPS’14): distributed balanced clustering with

- approx. ratio: (small constant) * (best “single machine” ratio)
- rounds of MapReduce: constant (2)
- memory: \((n/m)^2 \) with \(m \) machines

Works for all \(L_p \) objectives.. (includes k-means, k-median, k-center)

Improving Previous Work

• Bahmani, Kumar, Vassilivitskii, Vattani: Parallel K-means++
• Balcan, Enrich, Liang: Core-sets for k-median and k-center
Experiments

Aim: Test algorithm in terms of (a) scalability, and (b) quality of solution obtained

Setup: Two “base” instances and subsamples (used $k=1000$, #machines = 200)

US graph: $N = x_0$ Million
distances: geodesic

World graph: $N = x_{10}$ Million
distances: geodesic

<table>
<thead>
<tr>
<th></th>
<th>size of seq.</th>
<th>increase in OPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>1/300</td>
<td>1.52</td>
</tr>
<tr>
<td>World</td>
<td>1/1000</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Accuracy: analysis pessimistic

Scaling: sub-linear
Coverage/Submodular Maximization

• **Max-Coverage:**
 - Given: A family of subsets $S_1 \ldots S_m$
 - Goal: choose k subsets $S'_1 \ldots S'_k$ with the maximum union cardinality.

• **Submodular Maximization:**
 - Given: A submodular function f
 - Goal: Find a set S of k elements & maximize $f(S)$.

• **Applications:** Data summarization, Feature selection, Exemplar clustering, ...
Bad News!

- Theorem [IndykMahabadiMahdianM PODS’14] There exists no better than \(\frac{\log k}{\sqrt{k}}\) approximate composable core-set for submodular maximization.

- Question: What if we apply random partitioning?

YES! Concurrently answered in two papers:
- Barbosa, Ene, Nugeon, Ward: ICML’15.
- M., ZadiMoghaddam: STOC’15.
Summary of Results

[M. ZadiMoghaddam - STOC’15]

1. A class of 0.33-approximate randomized composable core-sets of size k for non-monotone submodular maximization.

2. Hard to go beyond $\frac{1}{2}$ approximation with size k. Impossible to get better than $1-\frac{1}{e}$.

3. 0.58-approximate randomized composable core-set of size $4k$ for monotone f. Results in 0.54-approximate distributed algorithm.

4. For small-size composable core-sets of k' less than k: $\sqrt{\frac{k'}{k}}$-approximate randomized composable core-set.
(2 − \sqrt{2})\text{-approximate Randomized Core-set}

• Positive Result [M, ZadiMoghaddam]: If we increase the output sizes to be 4k, Greedy will be (2-\sqrt{2})\cdot o(1) \geq 0.585\text{-approximate randomized core-set for a monotone submodular function.}

• Remark: In this result, we send each item to C random machines instead of one. As a result, the approximation factors are reduced by a O(ln(C)/C) term.
Summary: composable core-sets

- Diversity maximization (PODS’14)
 - Apply constant-factor composable core-sets
- Balanced clustering (k-center, k-median & k-means) (NIPS’14)
 - Apply Mapping Core-sets → constant-factor
- Coverage and Submodular maximization (STOC’15)
 - Impossible for deterministic composable core-set
 - Apply randomized core-sets → 0.54-approximation

Future:
- Apply core-sets to other ML/graph problems, feature selection.
 - For submodular:
 - 1-1/e-approximate core-set
 - 1-1/e-approximation in 2 rounds (even with multiplicity)?
Distributed Balanced Partitioning via Linear Embedding

- Based on work by Aydin, Bateni, Mirrokni
Balanced Partitioning Problem

- Balanced Partitioning:
 - Given graph $G(V, E)$ with edge weights
 - Find k clusters of approximately the same size
 - Minimize Cut, i.e., #intercluster edges

- Applications:
 - Minimize communication complexity in distributed computation
 - Minimize number of multi-shard queries while serving an algorithm over a graph, e.g., in computing shortest paths or directions on Maps
Outline of Algorithm

Three-stage Algorithm:
1. Reasonable Initial Ordering
 a. Space-filling curves
 b. Hierarchical clustering
2. Semi-local moves
 a. Min linear arrangement
 b. Optimize by random swaps
3. Introduce imbalance
 a. Dynamic programming
 b. Linear boundary adjustment
 c. Min-cut boundary optimization
Step 1 - Initial Embedding

- Space-filling curves (Geo Graphs)

- Hierarchical clustering (General Graphs)
Datasets

- Social graphs
 - Twitter: 41M nodes, 1.2B edges
 - LiveJournal: 4.8M nodes, 42.9M edges
 - Friendster: 65.6M nodes, 1.8B edges

- Geo graphs
 - World graph: > 1B edges
 - Country graphs (filtered)
 Related Work

- **FENNEL, WSDM’14 [Tsourakakis et al.]**
 - Microsoft Research
 - Streaming algorithm
- **UB13, WSDM’13 [Ugander & Backstorm]**
 - Facebook
 - Balanced label propagation
- **Spinner, (very recent) arXiv [Martella et al.]**
- **METIS**
 - In-memory
Comparison to Previous Work

Cut Size Comparison (LiveJournal)

<table>
<thead>
<tr>
<th>k</th>
<th>Spinner (5%)</th>
<th>UB13 (5%)</th>
<th>Affinity (0%)</th>
<th>Our Alg (0%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>38%</td>
<td>37%</td>
<td>35.71%</td>
<td>27.5%</td>
</tr>
<tr>
<td>40</td>
<td>40%</td>
<td>43%</td>
<td>40.83%</td>
<td>33.71%</td>
</tr>
<tr>
<td>60</td>
<td>43%</td>
<td>46%</td>
<td>43.03%</td>
<td>36.65%</td>
</tr>
<tr>
<td>80</td>
<td>44%</td>
<td>47.5%</td>
<td>43.27%</td>
<td>38.65%</td>
</tr>
<tr>
<td>100</td>
<td>46%</td>
<td>49%</td>
<td>45.05%</td>
<td>41.53%</td>
</tr>
</tbody>
</table>

- **Spider (5%)**
- **UB13 (5%)**
- **Affinity (0%)**
- **Our Alg (0%)**
Comparison to Previous Work

<table>
<thead>
<tr>
<th>k</th>
<th>Spinner (5%)</th>
<th>Fennel (10%)</th>
<th>Metis (2-3%)</th>
<th>Our Alg (0%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>15%</td>
<td>6.8%</td>
<td>11.98%</td>
<td>7.43%</td>
</tr>
<tr>
<td>4</td>
<td>31%</td>
<td>29%</td>
<td>24.39%</td>
<td>18.16%</td>
</tr>
<tr>
<td>8</td>
<td>49%</td>
<td>48%</td>
<td>35.96%</td>
<td>33.55%</td>
</tr>
</tbody>
</table>
Practice: Algorithms + System Research

Two stories:

- Connected components in MapReduce & Beyond
 Going beyond MapReduce to build efficient tool in practice.
- ASYMP
 A new asynchronous message passing system.
Graph Mining Frameworks

Applying various frameworks to graph algorithmic problems

- **Iterative MapReduce (Flume):**
 - More widely fault-tolerant available tool
 - Can be optimized with algorithmic tricks

- **Iter. MapReduce + DHT Service (Flume):**
 - Better speed compared to MR

- **Pregel:**
 - Good for synch. computation w/ many rounds
 - Simpler implementation

- **ASYMP (ASYnchronous Message-Passing):**
 - More scalable/More efficient use of CPU
 - Asych. self-stabilizing algorithms
Metrics for MapReduce algorithms

- **Running Time**
 - Number of MapReduce rounds
 - Quasi-linear time processing of inputs

- **Communication Complexity**
 - Linear communication per round
 - Total communication across multiple rounds

- **Load Balancing**
 - No mapper or reducer should be overloaded

- **Locality of the messages**
 - Sending messages locally when possible
 - Use the same key for mapper/reducer when possible
 - Effective while using MR with DHT (more later)
Connected Components: Example output

Web Subgraph: 8.5B nodes, 700B edges

Distribution of Cluster Sizes

- 1.6 billion nodes scattered in clusters of size 1 or 2
- 1 cluster with 5.83 billion nodes

Total number of nodes: 8.55 billion
Prior Work: Connected Components in MR

Connected components in MapReduce, Rastogi et al, ICDE’12

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>#MR Rounds</th>
<th>Communication / Round</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash-Min</td>
<td>D (Diameter)</td>
<td>$O(m+n)$</td>
<td>Many rounds</td>
</tr>
<tr>
<td>Hash-to-All</td>
<td>$\log D$</td>
<td>$O(n)$</td>
<td>Long rounds</td>
</tr>
<tr>
<td>Hash-to-Min</td>
<td>Open</td>
<td>$O(n\log n+m)$</td>
<td>BEST</td>
</tr>
<tr>
<td>Hash-Greater-to-Min</td>
<td>$3 \log D$</td>
<td>$2(n+m)$</td>
<td>OK, but not the best</td>
</tr>
</tbody>
</table>
Connected Components: Summary

- Connected Components in MR & MR+DHT
 - Simple, local algorithms with $O(\log^2 n)$ round complexity
 - Communication efficient (#edges non-increasing)
- Use Distributed HashTable Service (DHT) to improve # rounds to $O_\sim(\log n)$ [from ~20 to ~5]
- Data: Graphs with ~XT edges. Public data with 10B edges
- Results:
 - MapReduce: 10-20 times faster than HashToMin
 - MR+DHT: 20-40 times faster than HashToMin
 - ASYMP: A simple algorithm in ASYMP: 25-55 times faster than HashToMin

KiverisLattnziM.RastogiVassilivitskii, SOCC’14.
ASYMP: ASYNchrous Message Passing

- ASYMP: New graph mining framework
- Compare with MapReduce, Pregel
- Computation does not happen in a synchronize number of rounds
- Fault-tolerance implementation is also asynchronous
- More efficient use of CPU cycles
- We study its fault-tolerance and scalability
- Impressive empirical performance (e.g., for connectivity and shortest path)

Asymp model

- Nodes are distributed among many machines (workers)
- Each node keeps a state and send messages to its neighbors.
- Each machine has a priority queue for sending messages to other machines

- Initialization: Set nodes’ states & activate some nodes
- Main Propagation Loop (Roughly):
 - Until all nodes converge to a stable state:
 - Asynchronously update states and send top messages in each priority queue
- Stop Condition: Stop when priority queues are empty...
Asymp worker design
Data Sets

- 5 Public and 5 Internal Google graphs e.g.
 - UK Web graph: 106M nodes, 6.6B edges [Public]
 - Google+ subgraph: 178M nodes, 2.9B edges
 - Keyword similarity: 371M nodes, 3.5B edges
 - Document similarity: 4,700M nodes, 452B edges

- Sequence of Web subgraphs:
 - ~1B, 3B, 9B, 27B core nodes [16B, 47B, 110B, 356B]
 - ~36B, 108B, 324B, 1010B edges respectively

- Sequence of RMAT graphs [Synthetic and Public]:
 - ~2^{26}, 2^{28}, 2^{30}, 2^{32}, 2^{34} nodes
 - ~2B, 8B, 34B, 137B, 547B edges respectively.
Comparison with best MR algorithms

Running time comparison

- MR ext
- MR int
- MR+HT
- Asymp
Asynchronous Checkpointing:
- Store the current states of nodes once in a while
- Upon failure of a machine:
 - Fetch the last recorded state of each node, &
 - Activate these nodes (send messages to neighbors), and ask them to resend the messages it may have lost.

Therefore, a self-stabilizing algorithm works correctly in ASYMP.

Example: Dijkstra Shortest Path Algorithm
Impact of failures on running time

• Make a fraction/all of machines fail over time.
 ○ Question: What is the impact of frequent failures?
• Let D be the running time without any failures. Then

<table>
<thead>
<tr>
<th>% Machine Failures over the whole period (→ #per batch)</th>
<th>6% of machine failures at a time</th>
<th>12% of machine failures at a time</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>$Time \approx 2D$</td>
<td>$Time \approx 1.4D$</td>
</tr>
<tr>
<td>100%</td>
<td>$Time \approx 3.6D$</td>
<td>$Time \approx 3.2D$</td>
</tr>
<tr>
<td>200%</td>
<td>$Time \approx 5.3D$</td>
<td>$Time \approx 4.1D$</td>
</tr>
</tbody>
</table>

• More frequent small-size failures is worse than less frequent large-size failures
 ○ More robust against group-machine failures
Questions?

Thank you!
Algorithmic approach: Operation 1

Large-star(v): Connect all strictly larger neighbors to the min neighbor including self

- Do this in parallel on each node & build a new graph
- Theorems (KLMRV’14):
 - Executing Large-star in parallel preserves connectivity
 - Every Large-star operation reduces height of tree by a constant factor
Algorithmic approach: Operation 2

Small-star(v): Connect all smaller neighbors and self to the min neighbor including self

- Connect all parents to the minimum parent

- **Theorem (KLMRV’14):**
 - Executing Small-star in parallel preserves connectivity
Final Algorithm: Combine Operations

• Input
 ◦ Set of edges with a unique ID per node

Algorithm:
 Repeat until convergence
 ◦ Repeated until convergence
 ◦ Large-Star
 ◦ Small-star

• Theorem (KLMRV’14):
 ◦ The above algorithm converges in $O(\log^2 n)$ rounds.
Improved Connected Components in MR

• Idea 1: Alternate between Large-Star and Small-Star
 – Less #rounds compared to Hash-to-Min, Less Communication compared to Hash-Greater-to-Min
 – Theory: Provable $O(\log^2 n)$ MR rounds

• Optimization: Avoid large-degree nodes by branching them into a tree of height two

• Practice:
 – Graphs with 1T edges. Public data w/ 10B edges
 – 2 to 20 times faster than Hash-to-Min (Best of ICDE’12)
 – Takes 5 to 22 rounds on these graphs
CC in MR + DHT Service

• Idea 2: Use Distributed HashTable (DHT) service to save in #rounds
 – After small #rounds (e.g., after 3rd round), consider all active cluster IDs, and resolve their mapping in an array in memory (e.g. using DHT)
 – Theory: $O(\log n)$ MR rounds + $O(n/\log n)$ memory.
 – Practice:
 • Graphs with 1T edges. Public data w/ 10B edges.
 • 4.5 to 40 times faster than Hash-to-Min (Best of ICDE’12 paper), and 1.5 to 3 times faster than our best pure MR implementation. Takes 3 to 5 rounds on these graphs.
Data Sets

- 5 Public and 5 Internal Google graphs e.g.
 - UK Web graph: 106M nodes, 6.6B edges [Public]
 - Google+ subgraph: 178M nodes, 2.9B edges
 - Keyword similarity: 371M nodes, 3.5B edges
 - Document similarity: 4,700M nodes, 452B edges

- Sequence of RMAT graphs [Synthetic and Public]:
 - ~2^{26}, 2^{28}, 2^{30}, 2^{32}, 2^{34} nodes
 - ~2B, 8B, 34B, 137B, 547B edges respectively.

- Algorithms:
 - Min2Hash
 - Alternate Optimized (MR-based)
 - Our best MR + DHT Implementation
 - Pregel Implementation
Speedup: Comparison with HTM

[Bar chart showing speedup over HTM for different datasets and similarity types: Google+, Orkut, Related Entity, Keyword Similarity, Document Similarity, Friendster, Patents, LiveJournal, UK Web, Twitter.]
#Rounds: Comparing different algorithms

![Bar chart comparing different algorithms across various data sets.](chart.png)
Comparison with Pregel
Warm-up: # connected components
Warm-up: # connected components

We can compute the components and assign to each component an id.
Warm-up: # connected components

After adding private edges it is possible to recompute it by counting # newly connected components
Warm-up: # connected components

After adding private edges it is possible to recompute it by counting # newly connected components.
Warm-up: # connected components

After adding private edges it is possible to recompute it by counting # newly connected components.