Secure Computation ORAM
The Case of 3-Party Computation

Stanislaw Jarecki, UC Irvine
Cryptography in the RAM Model Workshop,
Cambridge, MA,
June 2016

AC’15: Sky Faber, S.J., Sotirios Kentros, Boyang Wei
New Work: S.J., Boyang Wei
Secure Computation of (O)RAM Access (SC-ORAM)

SC-ORAM = Sec. Comp of F_{ORAM}: sharing of $D, x \rightarrow$ sharing of $D[x]$

(for <write>: additional shared input v and $D \rightarrow D'$ s.t. $D'[x] = v$)
Secure Computation of (O)RAM Access (SC-ORAM)

Application: n-Server Private Database (≈ n-Server SPIR)

SC-ORAM = Sec.Comp of F_{ORAM}: sharing of $D, x \rightarrow$ sharing of $D[x]$

Diagram:
- D_1, D_2, \ldots, D_n
- X_1, X_2, \ldots, X_n
- S_1, S_2, \ldots, S_n
- Client
- $X \rightarrow s = D[x]$
Secure Computation of (O)RAM Access (SC-ORAM)

Application: Sec. Comp. of RAM Program [OS’97, DMN’11, GKKKMRV’12]

SC-ORAM = Sec. Comp of F_{ORAM}: sharing of D, x \rightarrow sharing of $D[x]$

Each instruction computed by standard MPC (Yao, BGW, ...)

Sec. Comp. of RAM programs with polylog($|D|$) overhead
Generic SC-ORAM Construction [OS’97, GKKKMVR’12]
ORAM Scheme + Secure Comp. of Client’s Code → SC-ORAM

ORAM:

Client
MK, x

Server
Enc_{MK}(D; r)

D[x]

SC-ORAM:

Client_{1}
MK_{1}, x_{1}

2PC

Client_{2}
MK_{2}, x_{2}

Enc_{MK}(D; r)

Server

D[x] = v_{1} \oplus v_{2}
Generic SC-ORAM Construction \cite{OS'97,GKKKMRV'12}

ORAM Scheme + Secure Comp. of Client’s Code

For efficient MPC of RAM programs we need ORAM whose Client is “Secure-Computation Friendly”

\[D[x] = v_1 \oplus v_2\]

\[\text{[GKKKMRV'12a]}: \ GO'96 \ ORAM \ + \ Yao \ + \ PK-based \ SS-OPRF \ gadget\]

\[\text{[GKKKMRV'12b]}: \ Path-ORAM \ [\text{Shi+’11}] \ + \ Yao\]

\[\text{[WHCSS’14]}: \ Path-ORAM \ modified \ + \ Yao \ \Rightarrow \ small \ circuits\]
Our Question:
Could SC-ORAM be faster given 3 players with honest majority?

3 Parties = 2 Parties with correlated randomness

Example: Oblivious Transfer with Precomputation [Bea’95]

2 Parties: OT needs PK crypto ops [IR’89]
3 Parties: OT costs 4 xor’s
SC for Path-ORAM [Shi+’11]
Path-ORAM Access: Recursive Tree+Array Lookup

Split address space of m bits, h chunks of $\tau=m/h$ bits

\[N = [N_1 \mid N_2 \mid \ldots \mid N_h] \]

T_i is a binary tree of depth $d_i = i \cdot \tau$, tree nodes are buckets of size w

ORAM = $(T_0, T_1, T_2, \ldots, T_h)$
SC for Path-ORAM [Shi+’11]
Path-ORAM Access: Recursive Tree+Array Lookup

Split address space of m bits, h chunks of $\tau = m/h$ bits
$N = [N_1 \mid N_2 \mid \ldots \mid N_h]$

T_i is a binary tree of depth $d_i = i \cdot \tau$, tree nodes are buckets of size w

Client’s code is a sequence of *array* or *dictionary* list look-ups...

Server

Client

T_0 T_1 T_2 \ldots T_h

L_1 L_2 L_3

N_1 N_2 \ldots N_h

T_i is a binary tree of depth $d_i = i \cdot \tau$, tree nodes are buckets of size w
SC for Path-ORAM [Shi+’11]
The other half: Path-ORAM Eviction

Eviction: 1) put the (modified) retrieved entry on top
2) move all* entries down towards their targets labels

SC-ORAM: To reduce circuit size, use **constrained eviction strategy**
SC for Tree-ORAM
Three Steps

Access: Retrieve data assoc. with searched-for address N
SS[X, N] → d s.t. (N,d) ∈ X

Eviction.1: Compute movement logic, T : [n] → [n]
SS[X_\mid N] → SS[T]

Eviction.2: Permute path X according to T
SS[X, T] → SS[T(X)] s.t. T(X) = X_{T(1)},...,X_{T(n)}

2PC-ORAM costs: online, passive adv (last tree, w/o small constants)

bndw: |X|·k
comp: |C_A|+|C_T|+|C_M| ciphers (+ k OT’s)

X = (X_1,...,X_n) : tree path
k: sec.par.
3PC for Tree-ORAM

Access Step: \(\text{SS}[X, N] \rightarrow d \) s.t. \((N, d) \in X\)

Client’s code is a sequence of array look-ups...

3PC idea:
- secret-share all data (T_i’s and N) between \(P_1 \) & \(P_2 \)
- send matching entry to \(P_3 \) via *Conditional SS-OT*

\[
\begin{align*}
\begin{array}{c|c}
N_1^*, & \\
\vdots & \\
N_i^1 & d_1^1 \\
\vdots & \\
N_n & d_n \\
\end{array}
\quad & \quad \quad
\begin{array}{c|c}
N^*, & \\
\vdots & \\
N_i & d_i \\
\vdots & \\
N_n & d_n \\
\end{array}
\quad & \quad \quad
\begin{array}{c|c}
N_2^*, & \\
\vdots & \\
N_i^2 & d_i^2 \\
\vdots & \\
N_n & d_n \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
P_3 & \rightarrow d_i^1 \oplus d_i^2 \quad \text{for } i \text{ s.t. } N_i^1 \oplus N_1^* = N_i^2 \oplus N_2^*
\end{align*}
\]
3PC for Tree-ORAM

Access Step: \(SS[X, N] \rightarrow d \) s.t. \((N,d) \in X\)

<table>
<thead>
<tr>
<th>(P_1)</th>
<th>(N_1^*, \cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_i^1, d_i^1)</td>
<td>(\vdots, \vdots)</td>
</tr>
<tr>
<td>(\vdots, \vdots)</td>
<td>(\vdots, \vdots)</td>
</tr>
</tbody>
</table>

- **String Equality Problem:**

<table>
<thead>
<tr>
<th>(P_2)</th>
<th>(\vdots, \vdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_i^2, d_i^2)</td>
<td>(\vdots, \vdots)</td>
</tr>
<tr>
<td>(\vdots, \vdots)</td>
<td>(\vdots, \vdots)</td>
</tr>
</tbody>
</table>

2PC, Yao’s GC: \(knD \) bndw (+k exp’s)

2PC, arith.circ.: bndw--, rounds++

2PC, DH-KE: \(n \) exp’s

3PC: *Conditional Disclosure of Secrets*

- [GIKM00], IT: \(4nD \) bndw
- [AC’15], crypt: \(2n(m+D) \) bndw \(\approx 2x \) plain Client-Server ORAM

3PC, 2-PIR: +1 round, \(2nm+\sqrt{n}D \) bnds

k: sec.par.

n: # tuples in path

D: record size

m: address size
3PC for Tree-ORAM

Problem: P_3 learns position i where the $a^i = b^i$ match occurs...

3PC sol.: P_1 & P_2 shift their input lists by (the same) random offset P_3 can learn a pointer into the shifted list ($= \text{random in } [n]$)

P_1 & P_2 hold same PRF key k

\[
\begin{align*}
&[A^i, C^i] = \text{PRF}_k(a^i) \\
&\{[A^i, d_{i1} \oplus C^i]\}_i \\
&[B^i, D^i] = \text{PRF}_k(b^i) \\
&\{[B^i, d_{i2} \oplus D^i]\}_i \\
&d_{i1} \oplus d_{i2} \text{ for } i \text{ s.t. } a^i = b^i
\end{align*}
\]
Path-ORAM: from 2PC to 3PC
Access Step via CDS a.k.a. SS-COT

Access (C_A): $SS[X, N] \rightarrow d$ s.t. $(N,d) \in X$

Ev.1 (C_T): $SS[X|N] \rightarrow SS[T]$

Ev.2 (C_M): $SS[X, T] \rightarrow SS[T(X)]$ s.t. $T(X) = X_{T(1)}, \ldots, X_{T(n)}$

2PC-ORAM

Acc: $bndw: |X| \cdot k + ciph: |C_A| + OT's$

Ev.1: $ciph: |C_T|$

Ev.2: $ciph: |C_M|$

3PC-ORAM

2PC-ORAM

Acc: $bndw: |X|$

Ev.1: $ciph: |C_T|$

Ev.2: $ciph: |C_M|$

- 100x cheaper access
- Benefits:
 - response time (eviction in background)
 - access inherently sequential
 - batch access with postponed eviction

$X = (X_1, \ldots, X_n)$: tree path
k: sec.par.
3PC for Tree-ORAM
Eviction Steps

Ev.1 (C_T): $SS[X_{|N}] \rightarrow SS[T]$
Ev.2 (C_M): $SS[X, T] \rightarrow SS[T(X)]$ s.t. $T(X) = X_{T(1)}, \ldots, X_{T(n)}$

3PC idea: Use Yao for C_T, but make transition table T “uniform” s.t.:
Ev.1: If P_1 and P_2 locally permute secret-shared list X then P_3 can learn T in the clear
Ev.2: $SS[X, T] \rightarrow SS[T(X)]$ is a simple variant of OT

Uniform Transition Table T [AC’15]:
- T moves 2 items from node i to $i+1$
- P_1 & P_2 shuffle each bucket
- P_3 learns 2 first movable/empty items after 2 random shifts
Path-ORAM: from 2PC to 3PC.

Access (SS-COT), Ev.1 (Yao), Ev.2 (SS-OT)

Access (C_A): \(\text{SS}[X, N] \rightarrow d \) s.t. \((N, d) \in X\)

Ev.1 (C_T): \(\text{SS}[X|N] \rightarrow \text{SS}[T] \)

Ev.2 (C_M): \(\text{SS}[X, T] \rightarrow \text{SS}[T(X)] \) s.t. \(T(X) = X_{T(1)}, \ldots, X_{T(n)} \)

2PC-ORAM

Acc: \(\text{bndw}: |X| \cdot k + \text{ciph}: |C_A| + \text{OT’s} \)

Ev.1: \(\text{ciph}: |C_T| \)

Ev.2: \(\text{ciph}: |C_M| \)

\(\text{bndw}: |X| \cdot k = n(m+|d|)k \approx m^2w \cdot \alpha k \)

\(\text{ciph}: m^2w \cdot (\alpha + \alpha_{CT} + \alpha \cdot \alpha_{CM}) + \text{OT’s} \)

3PC-ORAM

\(\text{bndw}: |X| \)

\(\text{ciph}: |C_T| + \text{bndw}: nm \cdot k \)

\(\text{bndw}: |X| \)

\(m^2w \cdot (\alpha + k) \)

\(m^2w \cdot \alpha_{CT} \)

\(X = (X_1, \ldots, X_n) \): tree path
\(n = m \cdot w \)
\(\alpha = \max(2^T, D/m) \)
\(|d| \approx m \cdot \alpha \)

\(X_i = (\text{addr.}, \text{data}) \)
\(k : \text{sec.par.} \)
\(m : \text{address size} \)
\(w : \text{bucket width} \)
\(\tau : \text{addr. chunk size} \)
\(D : \text{record size} \)
\(\alpha_{CT}, \alpha_{CM} : \text{circ.comp. of } C_T, C_M \) (=circuit size / input length)
Path-ORAM: from 2PC to 3PC
Access (SS-COT), Ev.1 (Yao), Ev.2 (SS-OT)

<table>
<thead>
<tr>
<th>2PC-ORAM</th>
<th>3PC-ORAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc: bndw:</td>
<td>X</td>
</tr>
<tr>
<td>Ev.1: ciph:</td>
<td>C_T</td>
</tr>
<tr>
<td>Ev.2: ciph:</td>
<td>C_M</td>
</tr>
</tbody>
</table>

\[
\text{bndw: } |X|k = n(m+|d|)k \approx m^2 w \cdot \alpha k
\]
\[
\text{ciph: } m^2 w \cdot (\alpha + \alpha_{CT} + \alpha \cdot \alpha_{CM})
\]

\[
\text{AC’15: 3PC with simplistic eviction: very low } \alpha_{CT}, w=O(m+k) \approx 100
\]
\[
\text{WCS’15: “Circuit-ORAM”: 2PC, greedy eviction, higher } \alpha_{CT}, w=3, \alpha_{CM}=2
\]
\[
\text{New work: 2PC with same eviction as in Circuit-ORAM, slightly higher } \alpha_{CT}
\]

\[
X = (X_1,...,X_n) : \text{tree path}
\]
\[
X_i = (\text{addr.}, \text{data})
\]
\[
k : \text{sec.par.}
\]
\[
n = m \cdot w
\]
\[
m : \text{address size}
\]
\[
w : \text{bucket width}
\]
\[
\alpha = \max(2^\tau, D/m)
\]
\[
\tau : \text{addr. chunk size}
\]
\[
D : \text{record size}
\]
\[
|d| \approx m \cdot \alpha
\]
\[
\alpha_{CT}, \alpha_{CM} : \text{circ.comp. of } C_T, C_M (=\text{circuit size / input length})
\]
Circuit-ORAM Eviction [WCS’15]
From 2PC to 3PC : Making Transition Table T Uniform

Circuit ORAM Eviction:
greedy: “deepest goes first”

Making it Uniform:
1. Fill-in jumps so T is a cycle
2. Reveal $(\Pi \circ T)(i)$ instead of $T(i)$ for Π
 - permute outside Garb.Circ.
 - +2 rounds for (de-)mask/permute
Path-ORAM: 2PC vs. 3PC

- **2PC-ORAM:**
 - $bndw = m^2w \cdot \alpha k$
 - $|circ| = m^2w \cdot (\alpha + \alpha_{CT} + \alpha \cdot \alpha_{CM})$
 - k: sec.par (=128)
 - m: address size
 - w: bucket width (=3)
 - $\alpha = \max(2^\tau, D/m) = 2^\tau$
 - τ: addr. chunk size
 - D: record size (=4B)

- **3PC-ORAM:**
 - $bndw = m^2w \cdot (\alpha + k)$
 - $|circ| = m^2w \cdot \alpha_{CT}$
 - α_{CT} (=?) α_{CM} (=2): circ.comp. of C_T, C_M (=circuit size / input length)

Online Bandwidth

- CORAM, $\tau=3$
- 3PORAM, $\tau=6, w=128$
- 3PCORAM, $\tau=3$
- 3PCORAM, $\tau=6$

3PC: ~10X

CORAM: 2PC [WCS'15]:
- higher α_{CT}, $w=3$, $\alpha_{CM}=2$

3PORAM: 3PC [AC'15]:
- low α_{CT}, $w=O(m+k) \leq 128$

3PCORAM: 3PC [new]:
- same α_{CT} (~1.2x) and w as in CORAM
Path-ORAM: 2PC vs. 3PC

2PC-ORAM: $	ext{bndw} = m^2w \cdot \alpha k$

3PC-ORAM: $|\text{circ}| = m^2w \cdot (\alpha + \alpha_{CT} + \alpha \cdot \alpha_{CM})$

- k: sec.par (=128).
- m: address size
- w: bucket width (=3)
- $\alpha = \max(2^T, D/m) = 2^T$
- τ: addr. chunk size
- D: record size (=4B)
- α_{CT} (=?) α_{CM} (=2): circ.comp. of C_T, C_M (=circuit size / input length)

Garbled Circuit Size

CORAM: 2PC [WCS'15]: higher α_{CT}, $w=3$, $\alpha_{CM}=2$

3PORAM: 3PC [AC'15]: low α_{CT}, $w=O(m+k) \leq 128$

3PCORAM: 3PC [new]: same α_{CT} (~1.2x) and w as in CORAM

3PC: 5-10x
Path-ORAM: 2PC vs. 3PC

2PC-ORAM: $\text{bndw} = m^2 w \cdot \alpha k$

$|\text{circ}| = m^2 w \cdot (\alpha + \alpha_{CT} + \alpha_{CM})$

3PC-ORAM: $\text{bndw} = m^2 w \cdot (\alpha + k)$

$|\text{circ}| = m^2 w \cdot \alpha_{CT}$

k: sec.par ($=128$).

m: address size

w: bucket width ($=3$)

$\alpha = \max(2^T, D/m) = 2^T$

τ: addr. chunk size

D: record size ($=4B$)

$\alpha_{CT} (=?)$ $\alpha_{CM} (=2)$: circ.comp. of C_T, C_M (=circuit size / input length)

Online End-to-end Wallclock Time

3PC:
- Larger τ → 2x
 - 1.5x for CPU
 - 2-3x in rounds
- Pipelining → 2x

3PCORAM: 2PC [WCS’15]: higher α_{CT}, $w=3$, $\alpha_{CM}=2$

3PORAM: 3PC [AC’15]: low α_{CT}, $w=O(m+k) \leq 128$

3PCORAM: 3PC [new]: same α_{CT} (~1.2x) and w as in CORAM

m: address size
Questions, Directions

Examples:

- pipelining, batched access with postponed eviction, parallel access
- MPC for other data-structures
- general (t,n): the “P₁/P₂ permute & P₃ gets outputs” idea doesn’t scale...
- malicious security? covert security?
- secure-computation-friendly multi-server ORAM ([LO’14]: client uses PRF)