Stronger Public Key Encryption Schemes

Withstanding RAM Scraper Like Attacks

Prof. C. Pandu Rangan

Professor,
Indian Institute of Technology - Madras,
Chennai, India-600036.
Adaptive Chosen Ciphertext Attack (CCA2)

- **Setup** - Challenger C runs $(sk, pk) \leftarrow \text{KeyGen}(\kappa)$.
- **Query Phase I** - Adversary A is given access to $O_{\text{Enc}_{pk}()}$ and $O_{\text{Dec}_{sk}()}$.
- **Challenge Phase** - A produces two messages m_0 and m_1 to C. C chooses $b \in \mathbb{R} \{0, 1\}$ and returns the challenge ciphertext $c^* = \text{Enc}_{pk}(m_b)$.
- **Query Phase II** - Same as Query Phase I, except that A cannot query the decryption of c^*.
- **Guess** - A outputs b'.

We define the advantage of an adversary in the IND-CCA2 security game to be

$$Adv_{\text{Adversary}} = |2Pr[b' = b] - 1|$$

We say that an encryption scheme is IND-CCA2 secure if for any polynomial time adversary,

$$Adv_{\text{Adversary}} = \text{negl}(\kappa)$$
Motivation for the NEW Security Model
RAM Scrapers

- **RAM Scraper** is a piece of malware.
- It grabs data residing in a system's volatile memory.
- Added to the list of **Top Data Breach Attacks by Verizon Business**.
- In one instance the RAM scraper dumped the card data to a .dll in a Windows system subdirectory.
- It waited for retrieval by the scraper’s owners. [From InfoSec News - Attack of the RAM Scrapers, By Keith Ferrell]
The private key of a user will be stored in TPM.

The computations involving private keys will be carried out in TPM.

The private key values will not be moved to the RAM.

Some of the values generated by TPM may be sent to RAM.

All values in the RAM are available to the Adversary. (Values generated in untrusted environment as well as the values sent by TPM to RAM)

This scenario can be modelled exactly with Glass Box decryption.
The NEW Security Model
CCA2 Security Under Glass box Decryption

- **Setup** - Challenger C runs $(sk, pk) \leftarrow \text{KeyGen}(\kappa)$.
- **Query Phase I** - Adversary A is given access to $O_{\text{Enc}_{pk}(.)}$ and $O_{\text{GlassBoxDec}_{sk}(.)}$.
- **Challenge Phase** - A produces two messages m_0 and m_1 to C. C chooses $b \in_R \{0,1\}$ and returns the challenge ciphertext $c^* = \text{Enc}_{pk}(m_b)$.
- **Query Phase II** - Same as Query Phase I, except that A cannot query the Glass Box Decryption of c^*.
- **Guess** - A outputs b'.

We define the advantage of an adversary in the IND-CCA2 security game to be

$$\text{Adv}_A = |2\Pr[b' = b] - 1|$$

We say that an encryption scheme is IND-CCA2 secure under glass box decryption, if for any polynomial time adversary,

$$\text{Adv}_A = \text{negl}(\kappa)$$
Intuition Behind Glass Box Decryption Scheme

Usual flow in Decryption:
- Use the private key to retrieve some values from the ciphertext.
- Verify the validity of the constructed plaintext.
- The decryption oracle returns either the constructed value or NULL.

Decryption supporting Glass Box:
- Verify the validity of ciphertext.
- If valid, retrieve the potential plaintext, else ”ABORT”.
- If the potential plaintext passes some validity test, return the same, else ”ABORT”.

Remark
If we do this way, it allows a convenient partitioning of computations between trusted and untrusted parts of the system

Keeping this in mind we design a new scheme.
Glass box Vulnerability in an Implementation of Cramer Shoup (CS) Cryptosystem
Vulnerability in an Implementation of CS

The Cramer-Shoup encryption scheme

- **CS.Gen**: The private key and public key of a user are

 \[sk = (x_1, x_2, y_1, y_2, z_1, z_2) \]
 and public key \(pk = (g_1, g_2, c, d, h), \) where

 \[c = g_1^{x_1} g_2^{x_2}, \quad d = g_1^{y_1} g_2^{y_2} \]
 and \(h = g_1^{z_1} g_2^{z_2}. \)

- **CS.Enc**: Compute \(u_1 = g_1^r, \ u_2 = g_2^r, \ e = h^r m, \ \alpha = H(u_1, u_2, e) \) and

 \[v = c^r d^{r\alpha}. \]

 \[C = \langle u_1, u_2, e, v \rangle. \]

- **CS.Dec**: We do not perform any computation which involves the secret key outside the TPM in the implementaion. Still we are able to mount glass box attack on the implementation. On receiving a ciphertext \(C = \langle u_1, u_2, e, v \rangle \) decryption is done as follows:
Vulnerability in an Implementation of CS

Conventional System:
- Compute $\alpha = H(u_1, u_2, e)$.
- Compute $V = u_1^{x_1} u_2^{x_2} (u_1^{y_1} u_2^{y_2})^\alpha$.
- If ($v = V$) then,
 - Compute $Z = u_1^{z_1} u_2^{z_2}$.
 - Compute $m = e/Z$.
 - Return m.
Else ABORT

Hybrid System:
- NC: Compute $\alpha = H(u_1, u_2, e)$.
- RAM→TPM: $\langle \alpha, u_1, u_2 \rangle$
- SC: Compute $V = u_1^{x_1} u_2^{x_2} (u_1^{y_1} u_2^{y_2})^\alpha$.
- TPM→RAM: V
- NC: If ($v = V$) then,
 - SC: Compute $Z = u_1^{z_1} u_2^{z_2}$.
 - TPM→RAM: Z
 - NC: Compute $m = e/Z$ and return m.
Else ABORT
Vulnerability in an Implementation of CS

Consider the glass box execution of Decryption oracle on a ciphertext \((u_1, u_2, e, v)\),

(a) Since all these are inputs, they are visible/available to the adversary.

(b) In the evaluation of the expression \(\alpha = H(u_1, u_2, e)\) all values will be available to the adversary.

(c) The expression \(V = u_1^{x_1} u_2^{x_2} (u_1^{y_1} u_2^{y_2})^\alpha\) is evaluated using the TPM because this involves secret keys \(x_1, x_2, y_1, y_2\).

(d) Thus, \(u_1, u_2\) and \(\alpha\) are sent to the TPM and \(V = u_1^{x_1} u_2^{x_2} (u_1^{y_1} u_2^{y_2})^\alpha\) is sent to the normal world. Thus the adversary gets \(V\).

(e) The check \((v \neq V)\) is done outside the TPM. If this fails the adversary gets no further values. If \((v = V)\) is true, then \(Z = u_1^{z_1} u_2^{z_2}\) is computed in TPM and \(Z\) is sent out. Now, the adversary obtains the values \(Z\) and \(m = e/Z\) as well.

(f) Therefore, the set \(\mathcal{I}\) of values returned by decryption oracle is given by \(\mathcal{I} = \langle \alpha, V, -, - \rangle\) if the test fails and \(\mathcal{I} = \langle \alpha, V, Z, m \rangle\) when the test succeeds.
The idea behind the attack is:

- Use the training in Phase II of CCA2 game to obtain the values \(\langle u_1^{x_1}, u_2^{x_2}, u_1^{y_1}, u_2^{y_2} \rangle \).
- Use the above values to construct a valid ciphertext for \(\hat{m}m_\delta \), where \(\hat{m} \) is chosen by the adversary.
- Pass this to decryption oracle, obtain \(\hat{m}m_\delta \), from which obtain \(m_\delta \).
We will show how an adversary distinguishes the challenge ciphertext.

- During the challenge phase A selects two messages $\{m_0, m_1\}$ and sends them to C.
- Now, C constructs the challenge ciphertext C^* as
 \[
 C^* = \langle u_1^*, u_2^*, e^*, v^* \rangle = \langle u_1, u_2, (u_1)^{z_1}(u_2)^{z_2} m_\delta, (u_1)^{x_1}(u_2)^{x_2} ((u_1)^{y_1}(u_2)^{y_2})^\alpha \rangle,
 \]
 where δ is a random bit $\in \{0, 1\}$ and $\alpha = H(u_1^*, u_2^*, e^*)$.
- The challenger sends C^* to A and asks him to find the m_δ hidden in C^*.
Vulnerability in an Implementation of CS

In the second phase of the training C must respond to all legal queries raised by A. This is what A asks to find $m_δ$.

- A chooses $s_1 \in R \mathbb{Z}_q^*$ and constructs a ciphertext $C' = \langle u_1', u_2', e', v' \rangle = \langle (u_1^*)^{s_1}, (u_2^*)^{s_1}, e^*, v^* \rangle$, where u_1^* and u_2^* are the first two components of C^*. In other words C' is nothing but C^* with the first two components, namely u_1^* and u_2^* exponentiated with s_1.

- Now, A queries $\text{Glass-Box-Dec}(C')$. Note that it is legal to ask the decryption of C'.

- As C knows all the private keys, it would faithfully execute the $CS.\text{Dec}$ on C'.

- C will reject the ciphertext C' because $\nu' \neq (u_1')^{x_1} (u_2')^{x_2} ((u_1')^{y_1} (u_2')^{y_2})^{\alpha_1}$.
Vulnerability in an Implementation of CS

Now, $\mathcal{I} = \langle \alpha_1, V_1, Z, m \rangle$

$$= \langle H(u'_1, u'_2, e'), (u'_1)^{s_1x_1} (u'_2)^{s_1x_2} ((u_1^*)^{s_1y_1} (u_2^*)^{s_1y_2})^{\alpha_1}, -, - \rangle$$

Similarly, \mathcal{A} constructs another ciphertext C'' by choosing $s_2 \in_R \mathbb{Z}_q^*$, computing $u''_1 = (u_1^*)^{s_2}$, $u''_2 = (u_2^*)^{s_2}$, $e'' = e^*$ and $v'' = v^*$. The newly formed ciphertext is $C'' = \langle u''_1, u''_2, e'', v'' \rangle$. \mathcal{A} queries $\text{Glass-Box-Dec}(C'')$.

\mathcal{C} will reject C'' because it is invalid.

Here, $\mathcal{I} = \langle \alpha_2, V_2, Z, m \rangle$

$$= \langle H(u''_1, u''_2, e''), (u''_1)^{s_2x_1} (u''_2)^{s_2x_2} ((u_1^*)^{s_2y_1} (u_2^*)^{s_2y_2})^{\alpha_2}, -, - \rangle$$
We will now show that with the values V_1 and V_2, A performs the following and obtains m_δ:

- Computes $X_1 = V_1^{s_1^{-1}} = (u_1^*)^{x_1}(u_2^*)^{x_2}((u_1^*)^{y_1}(u_2^*)^{y_2})^{\alpha_1}$ and $X_2 = V_2^{s_2^{-1}} = (u_1^*)^{x_1}(u_2^*)^{x_2}((u_1^*)^{y_1}(u_2^*)^{y_2})^{\alpha_2}$.
- Computes $Y = \frac{X_1}{X_2} = ((u_1^*)^{y_1}(u_2^*)^{y_2})^{\alpha_1 - \alpha_2}$.
- Computes $Z_2 = Y^{(\alpha_1 - \alpha_2)^{-1}} = (u_1^*)^{y_1}(u_2^*)^{y_2}$.
- Computes $Z_1 = \frac{X_1}{Z_2^{\alpha_1}} = (u_1^*)^{x_1}(u_2^*)^{x_2}$.
- Generates a fresh ciphertext by computing $\hat{u}_1 = u_1^*$, $\hat{u}_2 = u_2^*$, $e = e^* \hat{m}$ and $\hat{v} = Z_1 Z_2^{\hat{\alpha}}$, where \hat{m} is an arbitrary message chosen by A and $\hat{\alpha} = H(\hat{u}_1, \hat{u}_2, e)$.
Now, $\hat{C} = \langle \hat{u}_1, \hat{u}_2, e, \hat{v} \rangle$ is a valid encryption on message $m_\delta \hat{m}$ and different from C^*. Thus A can legally query $\text{Glass-Box-Dec}(\hat{C})$.

- C returns $(u_1^*)^{x_1}(u_2^*)^{x_2}((u_1^*)^{y_1}(u_2^*)^{y_2})^{\hat{\alpha}}$ and $m_\delta \hat{m}$ as the output.
- Since A knows the value \hat{m}, A can easily obtain the message m_δ from $(m_\delta \hat{m})$.
- Thus, A identifies the bit δ almost always.
Vulnerability in an Implementation of CS

Lemma

The ciphertext $\hat{C} = \langle \hat{u}_1, \hat{u}_2, e, \hat{v} \rangle$ is a valid ciphertext and the glass box decryption returns $I = \langle \hat{\alpha}, V, Z, m \rangle = \langle \hat{\alpha}, (u_1^*)^{x_1}(u_2^*)^{x_2}((u_1^*)^{y_1}(u_2^*)^{y_2})^{\hat{\alpha}}, \hat{u}_1^{z_1} \hat{u}_2^{z_2}, m_\delta \hat{m} \rangle$ as the output.

Proof: The ciphertext $\hat{C} = \langle \hat{u}_1, \hat{u}_2, e, \hat{v} \rangle = \langle u_1^*, u_2^*, e^* \hat{m}, Z_1 Z_2^{\hat{\alpha}} \rangle$. C checks whether \hat{C} is valid by performing the check $\hat{v} = (\hat{u}_1)^{x_1}(\hat{u}_2)^{x_2}((\hat{u}_1)^{y_1}(\hat{u}_2)^{y_2})^{\hat{\alpha}}$, where $\hat{\alpha} = H(\hat{u}_1, \hat{u}_2, e)$. Below we show that \hat{C} passes this verification:

$$RHS = (\hat{u}_1)^{x_1}(\hat{u}_2)^{x_2}((\hat{u}_1)^{y_1}(\hat{u}_2)^{y_2})^{\hat{\alpha}}$$
$$= (u_1^*)^{x_1}(u_2^*)^{x_2}((u_1^*)^{y_1}(u_2^*)^{y_2})^{\hat{\alpha}}$$
$$= Z_1(Z_2)^{\hat{\alpha}}$$
$$= \hat{v} = LHS$$

Since the above check returns true, C performs the decryption by computing $e/(\hat{u}_1)^{z_1}(\hat{u}_2)^{z_2})$. We show that this computation outputs $\hat{m}m_\delta$:
Vulnerability in an Implementation of CS

\[\text{RHS} = (\hat{u}_1)^{x_1}(\hat{u}_2)^{x_2}(((\hat{u}_1)^{y_1}(\hat{u}_2)^{y_2})^{\hat{\alpha}} \]
\[= (u_1^*)^{x_1}(u_2^*)^{x_2}(((u_1^*)^{y_1}(u_2^*)^{y_2})^{\hat{\alpha}} \]
\[= Z_1(Z_2)^{\hat{\alpha}} \]
\[= \hat{v} = \text{LHS} \]

Since the above check returns true, \(C \) performs the decryption by computing \(e/(\hat{u}_1)^{z_1}(\hat{u}_2)^{z_2} \). We show that this computation outputs \(\hat{m}m_\delta \):

\[\frac{e}{(\hat{u}_1)^{z_1}(\hat{u}_2)^{z_2}} = \frac{e^* \hat{m}}{(u_1)^{z_1}(u_2)^{z_2}} = \frac{(u_1)^{z_1}(u_2)^{z_2}m_\delta \hat{m}}{(u_1)^{z_1}(\hat{u}_2)^{z_2}} = \frac{(u_1^*)^{z_1}(u_2^*)^{z_2}m_\delta \hat{m}}{(u_1^*)^{z_1}(u_2^*)^{z_2}} = m_\delta \hat{m} \]

Since \(u_1^* = \hat{u}_1 = u_1 \) and \(u_2^* = \hat{u}_2 = u_2 \)

\[\Box \]

Remark:

Notice that only one step is computed outside TPM but the value exposed due to that is sufficient for the adversary to break the system.
A Scheme in the Standard Model EncryptIGB
Gen\(^{GB}\): Key Generation Algorithm

Let \(G_1\) and \(G_2\) be groups with prime order \(q\). Let \(\hat{e} : G_1 \times G_1 \to G_2\) be an admissible bilinear pairing.

Hash functions:
- \(H_1 : G_2 \to \{0, 1\}^{l_m}\)
- \(H_2 : G_1 \times \{0, 1\}^{l_m} \to \mathbb{Z}_q^*,\) where \(l_m\) is the size of the message
- \(H_3 : G_1 \to \mathbb{Z}_q^*\)

User Keys:
- Choose \(x, s \in \mathbb{Z}_q\) and \(P, Q, Y, Z \in R \, G_1\).
- Compute \(X = xP \in G_1\).
- Compute \(\alpha = \hat{e}(P, Q)^s \in G_2\).

The private key \(sk = \langle x, s \rangle \in \mathbb{Z}_q^2\).

The public key \(pk = \langle P, Q, X, Y, Z, \alpha \rangle \in G_1^5 \times G_2\).
EncryptGB

\textbf{EncGB: Encryption Algorithm}
- Choose $r, t \in_R \mathbb{Z}_q$
- Compute $C_1 = rP$
- Compute $C_2 = m \oplus H_1(\alpha^r)$
- Compute $\hat{h} = H_2(C_1, C_2)$
- Compute $h = H_3(r(\hat{h}P + tX))$
- Compute $C_3 = r(hY + Z)$.
- Set $C_4 = t$.
- The ciphertext is $C = \langle C_1, C_2, C_3, C_4 \rangle$.

DecGB: Decryption Algorithm
Decryption of $C = \langle C_1, C_2, C_3, C_4 \rangle$ in Conventional Environment:
- Compute $\hat{h} = H_2(C_1, C_2)$
- Compute $U = \hat{h}C_1$
- Compute $V = C_4 \times C_1$
- Compute $h = H_3(U + V)$
- If $\hat{e}(C_3, P) \overset{?}{=} \hat{e}(hY + Z, C_1)$
 - Compute $W = \hat{e}(C_1, Q)^s$
 - Compute $m = C_2 \oplus H_1(W)$
- Else
 - \text{ABORT}
Decryption of $C = \langle C_1, C_2, C_3, C_4 \rangle$ in Hybrid Environment:

- **NC**: Compute $\hat{h} = H_2(C_1, C_2)$ and $U = \hat{h}C_1$
- **RAM→TPM**: $\langle C_1, C_4 \rangle$
- **SC**: Compute $V = C_4 \times C_1$
- **TPM→RAM**: V
- **NC**: Calculate $h = H_3(U + V)$.
- **NC**: Check if $e(C_3, P) \equiv e(hY + Z, C_1)$

 If true then
 - **NC**: Compute $e(C_1, Q)$
 - **RAM→TPM**: $e(C_1, Q)$
 - **SC**: Compute $e(C_1, Q)^s$
 - **TPM→RAM**: $e(C_1, Q)^s$
 - **NC**: Compute $H_1(e(C_1, Q)^s)$
 - **NC**: Compute $m = C_2 \oplus H_1(e(C_1, Q)^s)$

else **ABORT**.

A glass box decryption oracle exposes all the values computed and used in the NC, $\mathcal{I} = \langle \hat{h}, U, V, h, e(C_1, Q)), e(C_1, Q))^s, H_1(e(C_1, Q)^s), m \rangle$ to the adversary.
Proof of Correctness: To show that the decryption works properly, we have to show that:

1. \(U + V = r(\hat{h}P + tX) \).
2. If \(C = \langle C_1, C_2, C_3, C_4 \rangle \) is properly constructed, then
 \[\hat{e}(C_3, P) \overset{?}{=} \hat{e}(hY + Z, C_1) \. \]
3. \[\hat{e}(C_1, Q)^s = \alpha^r \], where \(C_1 = rP \).

Proof: Assume that for some \(r \in \mathbb{Z}_q \),

\[C_1 = rP \quad (1) \]

With respect to the same \(r \),

\[C_3 = r(hY + Z) \quad (2) \]

Hence it should be true that,

\[\hat{e}(C_3, P) \overset{?}{=} \hat{e}(hY + Z, C_1) \quad (3) \]

This proves the second assertion. Now,
Proof of Correctness Contd…:

\[U + V = \hat{h}C_1 + C_4 \times C_1 = \hat{h}rP + txrP = r(\hat{h}P + txP) = r(\hat{h}P + tX) \]

Thus,

\[U + V = r(\hat{h}P + tX) \] (4)

This shows that \(h = H_3(U + V) \) correctly recovers the \(h \) computed in the encryption algorithm.

This proves the first claim.

For the third claim, we note that

\[\hat{e}(C_1, Q)^s = \hat{e}(rP, Q)^s = [\hat{e}(P, Q)^s]^r = \alpha^r, \text{ Therefore,} \]

\[\hat{e}(C_1, Q)^s = \alpha^r \] (5)

This completes the proof that the decryption correctly recovers the message.
Proof for the security of $\text{EncryptI}^{\text{GB}}$

Theorem

The encryption scheme $\text{EncryptI}^{\text{GB}}$ is adaptive chosen ciphertext secure under glass box decryption if the DBDH Problem is hard to solve in polynomial time.

Definition

Decisional Bilinear Diffie Hellman Problem - DBDHP: Given $(R, aR, bR, cR) \in_R \mathbb{G}_1^4, \gamma \in_R \mathbb{G}_2$, the DBDHP in $\langle \mathbb{G}_1, \mathbb{G}_2 \rangle$ is to decide whether $\gamma \overset{?}{=} \hat{e}(R, R)^{abc}$.

The advantage of an adversary \mathcal{A} in solving the DBDH problem is.

$$\text{Adv}_{\mathcal{A}}^{DBDH} = |\Pr[\mathcal{A}(R, aR, bR, cR, \hat{e}(R, R)^{abc}) = 1] - \Pr[\mathcal{A}(R, aR, bR, cR, \gamma) = 1]|$$

The DBDH Assumption is that, for any probabilistic polynomial time algorithm \mathcal{A}, the advantage $\text{Adv}_{\mathcal{A}}^{DBDH}$ is negligibly small.
Proof for the security of EncryptIGB

Setup: \(C \) sets up a system as follows:

- Set

 \[P = R \]
 \[Q = bR \]

- Set

 \[\alpha = \hat{e}(aR, bR) \]

 Therefore, \(\alpha = \hat{e}(aR, bR) = \hat{e}(R, bR)^a = \hat{e}(P, Q)^a \)

Thus, the second component of the private key denoted as \(s \), is in fact \(a \) (implicitly). \(C \) does not know the value of \(a \). Now, choose \(x \in_R \mathbb{Z}_q \) and set

\[X = xP \]

This fixes the first component of the private key. Thus the private keys are \(\langle x, s = a \rangle \) and \(C \) knows \(x \) but does not know \(s \).
Proof for the security of EncryptI^{GB}

Setup - Contd...:
\[C \text{ chooses } \tilde{h}, y, \tilde{z} \in_R \mathbb{Z}_q \text{ and computes } \]
\[\beta = \tilde{h}(cP) \quad (10) \]
\[h^* = H_3(\beta) \quad (11) \]
\[Y = \frac{1}{h^*}(Q + yP) \quad (12) \]
\[Z = -Q + \tilde{z}P \quad (13) \]

The public keys are \(\langle P, Q, X, Y, Z, \alpha \rangle \) and the private keys are \(\langle x, s = a \rangle \)
Proof for the security of EncryptIGB

Phase I:
\textit{O\textsubscript{Glass-Box-Dec Oracle}}: \(\mathcal{C} \) decrypts the ciphertext \(C = \langle C_1, C_2, C_3, C_4 \rangle \) in the following way:
- Computes

\[
\hat{h} = H_2(C_1, C_2) \quad (14)
\]

\[
U = \hat{h}C_1 \quad (15)
\]

- Since, \(\mathcal{C} \) knows the private key \(x \), \(\mathcal{C} \) can also compute

\[
V = C_4xC_1 \quad (16)
\]

- Since the values of \(U \) and \(V \) are correct, \(\mathcal{C} \) computes correctly

\[
h = H_3(U + V) \quad (17)
\]

- Note that \(H_3 \) is a target collision resistant hash function and if \((h = h^*) \), abort. Since the \(Y \) and \(Z \) values are public \(\mathcal{C} \) computes correctly the value.

\[
hY + Z \quad (18)
\]
Proof for the security of EncryptI^{GB}

Phase I - Contd...:

- So far, \(C \) could compute and return to \(A \) the values \(\langle \hat{h}, U, V, h, hY + Z \rangle \).
- If \(\hat{e}(C_3, P) \equiv \hat{e}(hY + Z, C_1) \) passes, \(C \) must return the value \(\hat{e}(C_1, Q)^s \) as well to \(A \),
- \(C \) does not know the value of \(s \).
- \(C \) has to simulate this value. Since \(P \) is a generator,
 \[
 C_1 = rP, \text{ for some } r \in \mathbb{Z}_q \tag{19}
 \]
- Since \(\hat{e}(C_3, P) = \hat{e}(hY + Z, C_1) \) it follows that
 \[
 C_3 = r(hY + Z) \tag{20}
 \]
 For the same \(r \) defined in equation (19).
- Now,
 \[
 \hat{e}(C_1, Q)^s = \hat{e}(rP, Q)^s = \hat{e}(P, Q)^{rs} = \hat{e}(sP, Q)^r = \hat{e}(aP, rQ), \text{ Since } (s = a)
 \]
Proof for the security of EncryptI$^\text{GB}$

Phase I - Contd...:

- C knows the value of $aP = aR$ and value of Q.
- C does not know the value of r.
- Hence, C will compute the value of rQ indirectly. From equations (12), (13) and (20),

$$C_3 = r(hY + Z)$$

$$= r \left(\frac{h}{h^*} (Q + yP) - Q + \tilde{z}P \right)$$

$$= \left(\frac{h}{h^*} - 1 \right) rQ + \left(\frac{h}{h^*} y + \tilde{z} \right) rP \quad \text{(Since $h \neq h^*$)}$$

Rearranging, we obtain

$$rQ = \left(\frac{h}{h^*} - 1 \right)^{-1} \left[C_3 - \left(\frac{h}{h^*} y + \tilde{z} \right) C_1 \right] \quad (21)$$
Phase I - Contd...:

- Observe that all values in the RHS of equation (21) is available to C.
- Hence rQ can be computed using equation (21).
- Thus, $\hat{e}(C_1, Q)^s = \hat{e}(aP, rQ)$ can be computed even without knowing s.
- Hence, the glass box decryption queries can be perfectly answered by C.
- That is C can give perfect training to A.
Proof for the security of EncryptIGB\

Challenge Ciphertext Generation: A gives C two messages \(m_0, m_1\) of equal length. \(C^*\) is computed as follows:

- Set
 \[C_1^* = cR = cP \tag{22} \]
 Where, \(cR\) is the input to the hard problem.
- Compute
 \[C_2^* = m_\delta \oplus H_1(\gamma) \tag{23} \]
 Here, \(\delta \in \{0, 1\}\) is a random bit and \(\gamma\) is an input to the hard problem.
- Compute
 \[C_3^* = yC_1^* + \tilde{z}C_1^* \tag{24} \]
- Compute
 \[C_4^* = (\tilde{h} - \hat{h})x^{-1} \tag{25} \]
 Where, \(\hat{h} = H_2(C_1^*, C_2^*)\) and \(\tilde{h}\) was chosen by C at setup time. \(x\) is one of the private keys known to C.
- The challenge ciphertext \(C^* = \langle C_1^*, C_2^*, C_3^*, C_4^* \rangle\) is send to A.
Proof for the security of EncryptIGB

Challenge Ciphertext Generation - Contd...:

Lemma

The challenge ciphertext $C^* = \langle C_1^*, C_2^*, C_3^*, C_4^* \rangle$ is a valid and properly formed ciphertext.

Proof: Since $C_1^* = cP$, we should show that

$$C_3^* = c(hY + Z)$$ \hspace{1cm} (26)

Where, $h = H_3(c(\hat{h}P + tX))$ and $C_4^* = t = (\tilde{h} - \hat{h})x^{-1}$ Now,

$$c(\hat{h}P + tX) = c(\hat{h}P + C_4^*X)$$

$$= c(\hat{h}P + (\tilde{h} - \hat{h})x^{-1}xP) \hspace{0.5cm} (\text{From equation (25)})$$

$$= c(\hat{h}P - \hat{h}P + \tilde{h}P)$$

$$= \tilde{h}(cP) = \beta \hspace{0.5cm} (\text{From equation (10)})$$

Therefore,

$$h = H_3(c(\hat{h}P + tX)) = H_3(\beta) = h^*$$ \hspace{1cm} (27)
Proof for the security of EncryptI\(^{\text{GB}}\)

Challenge Ciphertext Generation - Contd...:

- From equations (24) and (27), we conclude that \(C^*\) is valid / consistent ciphertext, if \(C_3^* = c(h^*Y + Z)\).
- \(C_3^*\) was computed as \(yC_1^* + \tilde{z}C_1^*\) in equation (24).
- Thus we have to show that:

\[
c(h^*Y + Z) = yC_1^* + \tilde{z}C_1^*
\]

(28)

- In fact,

\[
c(h^*Y + Z) = c[Q + yP - Q + \tilde{z}P] \quad \text{(From equations (12) and (13))}
\]

\[
= y(cP) + \tilde{z}(cP)
\]

\[
= yC_1^* + \tilde{z}C_1^*
\]

- This proves that \(C^* = \langle C_1^*, C_2^*, C_3^*, C_4^* \rangle\) is a valid / consistent ciphertext.

Phase II: Same as Phase I.
Proof for the security of EncryptI^GB

Solving the DBDH Problem:

- The hard problem instance is \(\langle R, aR, bR, cR, \gamma \rangle \).
- \(C \) has set \(P = R, Q = bR \) and \(\alpha = e(aR, bR) = \hat{\alpha}(P, Q)^s \).
- In \(C^* \), \(C_1^* = cR = rP \) and \(C_2^* = m_\delta \oplus H_2(\gamma) \).
- If \(m_\delta \) were correctly identified by \(A \), then implicitly, by the collision resistant property of \(H_2 \),

\[
\gamma = \alpha^r \\
= \alpha^c \\
= \hat{\alpha}(P, Q)^{ac} \\
= \hat{\alpha}(R, bR)^{ac} \\
= \hat{\alpha}(R, R)^{abc}
\]
Conclusion

Summary:
- We have given a new, strong security model for public key encryption.
- Designed a scheme to withstand the RAM scraper attack and proved the security of the schemes in the Standard Model respectively.

Future Work:
- Establishing the relationship between CCA2 and the new security notion.
- Investigating the security of other primitives like signature and signcryption schemes in the presence of harmful RAM scrapers.
- Constructing a generic transformation that converts CPA/CCA1/CCA2 secure schemes into a Glass Box secure schemes.
References:

Publication details: Sree Vivek S, Sharmila Deva Selvi S, Akshayaram S and Pandu Rangan C: *Stronger public key encryption system withstanding RAM scraper like attacks*. To be published in Wiley, SCN Journal.

Thank you for your attention.