Exploring the Role of Behavior in Infectious Disease Dynamics: Mathematical Insights from World of Warcraft and other Virtual Worlds

Nina H. Fefferman, Ph.D.
Disclaimer: All game images shown are taken from Blizzard’s WoW website
First: What does an infectious disease epidemiologist do?

Analyzes:

- Disease risks to populations
- Origin of existing outbreaks
- Which public health strategies will help prevent outbreaks
- Which intervention strategies will end already existing outbreaks
- When to make public announcements about a health emergency
Practical epidemiologists can be like detectives:

They track down the spread of a disease by asking the infected people where they’d been, who they’d seen, etc.

This is can be incredibly difficult, but when done well, can head off the spread of infectious disease

- requires LOTS of time
- (hopefully) only a few people sick
- requires cooperation of the sick people and their families
Mathematical Epidemiologists do something a little different:

We use math to predict what disease outbreaks will look like if/when they happen.

How does this work?

There are a few different methods:

• Compartmental Models
• Network Models
• Agent Based Models (can be based on other types, but does it differently)

What are these mathematical models?

Luckily, we can represent them using pictures.
Compartmental Models: a basic overview

First we group people by health status:

\[S \rightarrow I \rightarrow R \]
Compartmental Models: a basic overview

First we group people by health status:

\[S \xrightarrow{\beta} I \xrightarrow{} R \]

Then we consider rates of moving from one compartment into another:

- Based on probabilities
 - exposure and infection from exposure: \(\beta \)
Compartmental Models: a basic overview

First we group people by health status:

\[S \xrightarrow{\beta} I \xrightarrow{\gamma} R \]

Then we consider rates of moving from one compartment into another

- Based on probabilities
 - exposure and infection from exposure: \(\beta \)
 - duration of illness and probability of recovery: \(\gamma \)
This picture tells a mathematical story

\[\frac{dS}{dt} = -\beta IS \]

\[\frac{dI}{dt} = \beta IS - \gamma I \]

\[\frac{dR}{dt} = \gamma I \]
The mathematics can get still more complicated

\[
\begin{align*}
\frac{dS(t)}{dt} &= -\beta(t)S(t) - \beta_S S(t)(I_A(t) + I_S(t)) \\
\frac{dE_1(t)}{dt} &= \beta(t)S(t) + \beta_S S(t)(I_A(t) + I_S(t)) - \pi E_1(t) \\
\beta(t) &= I\{t \leq 23\} \beta_0 + I\{23 < t \leq 38\} \beta_1 + I\{t > 38\} \beta_2 \\
\frac{dE_2(t)}{dt} &= \pi E_1(t) - \pi E_2(t) \\
\frac{dE_k(t)}{dt} &= \pi E_{k-1}(t) - \pi E_k(t) \\
\frac{dI_A(t)}{dt} &= \rho \pi E_k(t) - \delta I_A(t) \\
\frac{dI_S(t)}{dt} &= (1 - \rho)\pi E_k(t) - \delta I_S(t) \\
\frac{dR(t)}{dt} &= \delta (I_A(t) + I_S(t))
\end{align*}
\]
These compartmental models produce nice, easily understood curves.
But compartmental models are not always very accurate

Main reason: Assumed homogeneous, random mixing

Everyone in S has the same chance of moving into I based on assumed same chance of contacting someone from I
This leads us to Network Models:

Taken from <http://www.esi.utexas.edu/features/Archive/2003/meyers.html>
These networks can look more realistic:
How does the math on these networks work?

Basic idea is this:
How does the math on these networks work?

Basic idea is this:

Start by picking an individual
We know that guy has 4 contacts
How does the math on these networks work?

Basic idea is this:

Start by picking an individual

We know that guy has 4 contacts

One contact is R, one is I, two are S

If we know the probability of infection from that 1 infected guy, then we also know the probability that he’ll infect his other two susceptible friends.
How does the math on these networks work?

So how do we get a full mathematical understanding of the epidemic from this?

We can do this for “the average guy”

We compute the probabilities of contact and infection over time on this known pattern of contacts.

That gives us our outbreak.
The Compartmental Model and Network Model Won’t Always Agree

Notice: Each individual infected guy has fewer susceptibles to potentially infect than in the compartmental model version

This will depend on the network structure
It can also depend on who starts the outbreak
And there is a third way to model epidemics: Agent Based Models

Using computer simulations, we create lots of individuals that all live together in an environment

They can:

1. Move around the environment
2. Each have their own susceptibility to disease
3. Interact with each other over time
The individuals effectively run around together:
If an infected individual meets an uninfected individual, there can be disease transmission:
Notice the similarities between AB Models and the other types:

If everyone really does mix at random (like the first slide where they all just ran around), then it’s very much like compartmental models, where the compartments just keep track of the colors of the individuals.

If it’s more like the second example, where groups of people come together, we could draw those contacts explicitly and that would be a network model.
So what do AB Models do for us that the others don’t?

Usually we don’t explicitly decide where and when the individuals go in an AB model – we let the computer decide “at random”, possibly influenced by the environmental conditions that can, in turn, be influenced by the positions and states of the individuals.

This means that these models include a type of stochasticity that the others don’t usually have.

(There are ways to include stochasticity in the others - they are complicated and we won’t go into them now)

What do all three of these model types have in common?
They all include some representation of human behavior affecting disease spread!

In the compartmental model, the mixing is assumed to be random, and that defines how many individuals move from S into I.

In the network model, the mixing is defined by the lines drawn between individuals, and that defines how many other individuals one sick person can infect.

In the agent based models, the interactions happen at random, but when and how they happen define who is exposed to disease and for how long.
Finally this brings us to the basic difficulty: behavior is assumed in these models.

People are actually very difficult to predict.

As you’ve seen, we can use math to predict disease spread once we assume human behavior, but how do we find what patterns of behavior we should assume happen?

Right now, we basically guess!

Even if we measure it now, it’s likely that people will change how they behave if there is an outbreak of a dangerous disease.

How can we begin to understand what assumptions to make in that case?
We can ask people “What would you do if”, but people are bad at knowing the answer.

This is even more complicated with disease risks:

Infectious disease is one of the ONLY risks in life where both the danger and the defense come from being part of a group.

When are you willing to risk infection to care for a sick child?

When are you willing to forego seeking medical attention if you will infect the hospital worker?

These aren’t easy questions, but they have HUGE impact on the outcome of our mathematical disease models.
Now the fun part begins!
In 2005, World of Warcraft had 6.5 million players worldwide – it now has over 9 million

For those of you who don’t play, let me introduce you to the world for a few moments
It’s diverse: different types of people play

Working Moms

Students

Scholars

Policemen

Soldiers

Doctors

Politicians
It’s beautiful:
It’s dramatic – lots of areas to explore
It’s complex – different modes of transport
It has characters from many races
It has ‘world events’: like the lunar festival
It’s highly social: you drink with friends
It’s highly social: you explore in groups
It’s highly social: you ride public transportation (like the goblin zeppelin)
You face challenges together:
You wouldn’t want to meet this guy alone, would you?
People develop long lasting group friendships – relying on each other for months, even years of game play.
In 2005, for the first time in an online game, there was an accidental plague in WoW

Here’s what happened: a new area was opened for high level players

In this new area was a new monster – he was large and brutally hard to fight

You needed a team of high level friends just to get to him, and once you found him, you needed to cooperate with your friends to kill him

As part of the challenge of fighting him, he infected you with a disease called Corrupted Blood
Hakkar
Here’s where things didn’t go as planned:

If you were a high enough player to fight Hakkar, Corrupted Blood was unlikely to kill you – it would be annoying, but not deadly.

However, the higher level players didn’t necessarily wait, as the game had intended, to either be cured of the disease or killed by Hakkar once they had been infected with Corrupted Blood.

Some of them left and returned to the cities.
Instantly, lower level players started to die:
Public gathering places were quickly devastated, leaving only bones.
The plague had many of the right details to mirror real world epidemics

It originated from an animal in a remote, uninhabited, jungle region

It was carried by travelers to urban centers

It had both human and animal hosts and they passed infection back and forth among each other, sustaining the outbreak

It was spread from infected to susceptible individuals by close spatial contact

There were asymptomatic carriers: NPCs
From an epidemiological perspective:
The plague spread out of control
Blizzard (WoW’s company) tried to stop it by imposing a quarantine – it failed
Finally, Blizzard had to halt the plague by resetting the game servers

But did we learn anything?

How did players behave during the plague?

Was it close to how people behave in the real world during epidemics?

Somewhat surprisingly: Yes

We saw altruism, courage, compliance, fear, suspicion, public concern, non-compliance, opportunism, maliciousness, and even curiosity

Yes, we really DO see maliciousness in real life: e.g. Patient 0; Typhoid Mary

They don’t need to be actually malicious for their actions to be the same
Can we learn from what we saw?

Sure

Will it be all we need to know? No

Is it a place to start? Yes

People do behave differently when they know death is temporary, but serious in-game repercussions are still seriously to be avoided

People form strong social bonds in the game and those are very real

Only some people are gamers, so we have to figure out whether non-gamers would behave the same way
Where can we go from here?

Design more in-game disease events -
 Maybe not always using deadly plague

Study reactions to see if there are some we haven’t thought of in disease models yet (like curiosity)

Study whether people’s reactions change based on:
 Disease parameters
 Rumors
 Public Health announcements

Study what affects Risk Perception
So then what? If we learn all these things about behavior?

We go right back to our mathematical models.

They can tell us what to expect from disease dynamics, but now we will have a better idea of which human behaviors to assume, based on the types of disease risks.

Moral of the story:

Gaming can help save the world!
Work presented was in collaboration with my student, Eric Lofgren

Citation for formal paper:

Thanks for inviting me

Thank you for your attention and interest
The whole lab group (+/-):

Post docs: Dr K. Hock, Dr. A. Kebir
Research Programmers: E. Mulder, J. Kim
Undergrads: D. Chari*, S. Malik, A. Pritsker, Z. Paracha