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(Streaming) Massive Data Sets ⇒ High Dimensional Vectors

• Massive data sets visualized as high dimensional vectors

• E.g. Number of IP-packets sent to address i from IP address j
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Dimensionality = 232

• E.g. Number of phone calls made from telephone number j to telephone
number k

vj = {vj
1, v
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N ′}

Dimensionality = 109
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Update Model

• Vectors constantly updated as per cash register model

• Update element (i, a) for vector v changes it as follows:

v = {v1, v2, . . . , (vi + a), . . . , vN}

• Numerous high dimensional vectors
E.g. one vector per (millions) telephone customers,
one vector per (millions) IP-address etc.
Rows of a huge matrix

Mayur Datar. LSH Scheme based on p-Stable distributions 2



lp Norms

• lp(v) = (
∑N

i=1 |vi|p)1/p

E.g. l1 norm (Manhattan), l2 norm (Euclidean)

• lp norms usually computed over vector differences
E.g. l1(vj − vk), l2(vj − vk), l0.005(vj − vk) etc.

• What do lp norms capture?

– l1 norm applied to telephone vectors: symmetric (multi) set difference
between two customers

– lp norms for small values of p (0.005): capture Hamming norms,
distinct values [CDIM’02]
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Proximity Queries

• Nearest Neighbor: Given a query q find the closest (smallest lp norm)
point p

• Near Neighbor: Given a query q and distance R find all (or most)
points p s.t. lp(p − q) ≤ R

• Applications: Classification, fraud detection etc.
E.g. find cell phone customers whose calling pattern is similar to that of
XYZ (UBL)
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Approximate Nearest Neighbor

• Curse of dimensionality

• Error parameter ε: Find any point that is within (1+ε) times the distance
from true nearest neighbor

q
p*

r

(1+e)r
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Approximate Near Neighbor ((R, ε)–PLEB)

• B(c, R) denotes a ball of radius R centered at c

• Given: radius R, error parameter ε and query point q:

– if there exists data point p s.t. q ∈ B(p, R), return Yes and a point
(or all points) p′ s.t. q ∈ B(p′, (1 + ε)R),

– if q /∈ B(p, R) for all data points p, return No,

– if closest data point to q is at distance between R and R(1 + ε) then
return Yes or No
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Approximate Near Neighbor

• Useful problem formulation in itself

• Approximate nearest neighbor can be reduced to approximate near
neighbor (binary search on R)

• Henceforth, we will concentrate on solving approximate near neighbor
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Our contribution

• Data structure for the approximate near neighbor problem ((R, ε)–PLEB)

• Small query time, update time and easy to implement

• works for lp norms, for 0 < p ≤ 2. In particular 0 < p < 1

• Earlier result ([IM’98]) worked for l1, l2 and Hamming norm.

• Our technique improves the query time for l2 norm
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Locality Sensitive Hashing (LSH)([IM’98])

• Intuition: if two points are close (less than dist r1) they hash to same
bucket with prob at least p1. Else, if they are far (more than dist r2 > r1)
they hash to same bucket with prob no more than p2 < p1

• Formally: A family H = {h : S → U} is called (r1, r2, p1, p2)-sensitive
for distance function D if for any v, q ∈ S

– if v ∈ B(q, r1) then PrH[h(q) = h(v)] ≥ p1,

– if v /∈ B(q, r2) then PrH[h(q) = h(v)] ≤ p2.

– r1 < r2, p1 > p2
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Using LSH to solve (R, ε)–PLEB ([IM’98])

• Let c = 1 + ε

Theorem. Suppose there is a (R, cR, p1, p2)-sensitive family H for a
distance measure D. Then there exists an algorithm for (R, c)-
PLEB under measure D which uses O(dn + n1+ρ) space, with query
time dominated by O(nρ) distance computations, and O(nρ log1/p2

n)
evaluations of hash functions from H, where ρ = ln 1/p1

ln 1/p2

• Bottom-line: Design LSH scheme with small ρ for lp norms
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Recap

• Proximity problems reduced to designing LSH schemes

• Design LSH schemes for lp norms with small ρ, update time etc.

• A family H = {h : S → U} is called (r1, r2, p1, p2)-sensitive for distance
function D if for any v, q ∈ S

– if v ∈ B(q, r1) then PrH[h(q) = h(v)] ≥ p1,

– if v /∈ B(q, r2) then PrH[h(q) = h(v)] ≤ p2

• r1 = R = 1, r2 = R(1 + ε) = 1 + ε = c
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p–Stable distributions

• p–stable distribution (p ≥ 0): A distribution D over < s.t

– n real numbers v1 . . . vn,
– i.i.d. variables X1 . . . Xn with distribution D,
– r.v.

∑
i viXi has the same distribution as the variable (

∑
i |vi|p)1/pX =

lp(v)X, where X is a r.v. with distribution D

• E.g. p–Stable distr for p = 1 is Cauchy distr, for p = 2 is Gaussian distr

• for 0 < p < 2 there is a way to sample from a p–stable distribution given
two uniform r.v.’s over [0, 1] [Nol]
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How are p–Stable distributions useful?

• Consider a vector X = {X1, X2, . . . , XN}, where each Xi is drawn from
a p–Stable distr

• For any pair of vectors a, b a · X − b · X = (a − b) · X (by linearity)

• Thus a · X − b · X is distributed as (lp(a − b))X ′ where X ′ is a
p–Stable distr r.v.

• Using multiple independent X’s we can use a · X − b · X to estimate
lp(a− b) [Ind’01]
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How are p–Stable distributions useful?

• For a vector a, the dot product a · X projects it onto the real line

• For any pair of vectors a, b these projections are “close” (w.h.p.) if
lp(a − b) is “small” and “far” otherwise

• Divide the real line into segments of width w

• Each segment defines a hash bucket, i.e. vectors that project onto the
same segment belong to the same bucket
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Hashing (formal) definition

WWW

B

W

0

• Consider ha,b ∈ Hw, ha,b(v) : Rd → N

• a is a d dimensional random vector whose each entry is drawn from a
p-stable distr

• b is a random real number chosen uniformly from [0, w] (random shift)

• ha,b(v) = ba·v+b
w c
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Collision probabilities

WWW
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W

0

• Consider two vectors v1, v2 and let ` = lp(v1, v2)

• Let Y denote the distance between their projections onto the random
vector a ( Y is distributed as `X where X is a p-stable distr r.v.)

• if Y > w, v1, v2 will not collide

• if Y ≤ w, v1, v2 will collide with probability equal to (1 − (Y/w))
(random shift b)
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Collision probabilities

• fp(t): p.d.f. of the absolute value of a p-stable distribution

• ` = lp(v1, v2)

• ` ≤ 1, p1 = Pr[ha,b(v1) = ha,b(v2)] ≥
∫ w

0
fp(t)(1− t

w)dt

• ` > 1 + ε = c, p2 = Pr[ha,b(v1) = ha,b(v2)] ≤
∫ w

0
1
cfp(t

c)(1− t
w)dt

• Hw hash family is (r1, r2, p1, p2)-sensitive for r1 = 1, r2 = c and p1, p2

given as above
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Special cases

• p = 1(Cauchy distr): fp(t) = 2
π

1
1+t2

• p2 = 2tan−1(w/c)
π − 1

π(w/c) ln(1 + (w/c)2)

• p1 obtained by substituting c = 1
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Special cases

• p = 2(Gaussian distr): fp(t) = 2√
2π

e−t2/2

• p2 = 1− 2norm(−w/c)− 2√
2πw/c

(1− e−(w2/2c2))

• p1 obtained by substituting c = 1
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Comparison with previous scheme

• Previous hashing scheme for p = 1, 2 achieved ρ = 1/c

• Based on reduction to hamming distance

• New scheme achieves smaller ρ (than 1/c) for p = 2

• Large constants and log factors for p = 2 in query time besides nρ

• Achieves ρ = 1/c for p = 1
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ρ for p = 2
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ρ for p = 1
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General case

• what about general case, i.e. p 6= 1, 2?

Theorem. For any p ∈ (0, 2] there is a (r1, r2, p1, p2)-sensitive family Hw

for ldp such that for any γ > 0,

ρ =
ln 1/p1

ln 1/p2
≤ (1 + γ) ·max

(
1
cp

,
1
c

)
.

• Achieves 1
cp for p < 1
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Conclusions

• New LSH scheme for 0 < p ≤ 2. First one for 0 < p < 1

• Easy to implement (experiments in progress)

• Easy to update hash value in cash register model

• Improves running time for p = 2 over previous scheme
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