IP Lookup and Range Searching

Haim Kaplan
Tel Aviv University

Joint with: Lars Arge, Pankaj Agarwal, Moshik Hershcovitch, Eyal Molad, Bob Tarjan, Ke Yi
Longest Prefix Forwarding

- Packet has a destination address
- Router identifies the longest prefix of the destination address to find the next hop

<table>
<thead>
<tr>
<th>Destination</th>
<th>Forwarding Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.34.158.5</td>
<td>4.0.0.0/8</td>
</tr>
<tr>
<td></td>
<td>4.83.128.0/17</td>
</tr>
<tr>
<td></td>
<td>12.0.0.0/8</td>
</tr>
<tr>
<td></td>
<td>12.34.158.0/24</td>
</tr>
<tr>
<td></td>
<td>126.255.103.0/24</td>
</tr>
</tbody>
</table>

outgoing link
The table is dynamic

Routing protocols insert and delete prefixes

132.66.235.0/24

12.34.158.5

destination

4.0.0.0/8

4.83.128.0/17

12.0.0.0/8

12.34.158.0/24

126.255.103.0/24

forwarding table

outgoing link

4.0.0.0/8
The longest prefix problem

Given a set of strings \(S = \{p_1, \ldots, p_n\} \) (prefixes) build a data structure such that

Given a string \(q \) we can find (efficiently) the longest prefix of \(q \) in \(S \)

Updates - insert or delete a prefix
We can model this as follows

Each segment corresponds to a prefix
Segments are nested
A packet is a point

Want the **shortest segment** that contains the packet
Want to be able to insert/delete segments
Want to be able to insert/delete segments

0.0.0.0

IP address

255.255.255.255
Want to be able to insert/delete segments
Discussion

• In the segment-stabbing problem we assume that we can compare endpoints in $O(1)$ time.

• This may be reasonable if strings are short.

• It is less reasonable if we try to solve the longest prefix problem for arbitrary strings.
Results (1) (SWAT 2008, HK)

• A very simple data structure for shortest segment in a nested family
 $O(\log(n))$ time, and $O(\log_B(n))$ I/Os per op

• A data structure for longest prefix in a collection of arbitrary strings
 $O(\log(n) + |q|)$ time and $O(\log_B(n) + |q|/B)$ I/Os per op

both take linear space
Generalizations (1)

Given a set S of nested segments, each with priority assigned to it, build a structure that allows efficient queries of the from:

- Given a point x find segment with minimum priority containing it.
- Updates – insert or delete a segment
Given a set S of nested segments, each with priority assigned to it, build a structure that allows efficient queries of the from:

- Given a point x find segment with minimum priority containing it.
- Updates - insert or delete a segment
Motivation for the general problem

- Firewalls
- Rules are intervals/prefixes
- In case several rules apply to a packet then decide by priority
Results (2) (STOC 2003, KMT)

• A simple data structure for nested segments with priorities
 \(O(\log(n)) \) time per op,
 \(O(n) \) space (uses dynamic trees)

• A data structure for general segments
 \(O(\log(n)) \) time per query/insert but delete takes \(O(\log(n)\log\log(n)) \) time,
 \(O(n\log\log(n)) \) space
Results (3) (SODA 2005, AAY)

- A data structure for **general segments**
 \(O(\log(n))\) time per query/insert but delete takes \(O(\log(n)\log\log(n))\) time, \(O(n\log\log(n))\) space

- \(O(\log_B(n))\) I/Os per operation
Results (4) extension to 2D (M’03)

• Query \Rightarrow point in \mathbb{R}^2
 - (Sender IP, receiver IP)
• interval \Rightarrow rectangle with priority

We can keep the query time logarithmic for nested rectangles
Previous work: Networking community

- Specific for IP addresses, assume RAM, bounds often depend on W: the length of the address
 (Sahni & Kim: $O(n)$ space $O(\log n)$ time per op, complicated, still use RAM)

- trie based solutions
- hash based solutions
Previous work: Theory community

• Feldman & Muthukrishnan (2000), Thorup (2003) use RAM to get query time below $O(\log(n))$

• Thorup: $O(1)$ query time $O(n^{1/l})$ update time, $O(n)$ space for general priority stabbing
Lets get started...

- An update time of $O(\log^2(n))$ using $O(n\log(n))$ space is easy!
Classical solution: Segment tree

Construct a balanced binary tree over the basic intervals
Place segment s in every node v such that s "covers v" but does not "cover $p(v)$"
Place segment s in every node v such that s “covers v” but does not “cover $p(v)$”
 Traverse the path to the leaf containing x - $O(\log(n))$ nodes.
In each node choose the min segment.
Find the minimum among those.
$O(\log(n))$ time
Segment tree - Insert

Insert two new leaves

Add a segment in $O(\log n)$ nodes
Insert two new leaves

Add a segment in $O(\log n)$ nodes
Insert two new leaves

Add a segment in $O(\log n)$ nodes
Insert two new leaves

Add a segment in $O(\log n)$ nodes

delete in analogous

need a secondary heap at each node

$\Rightarrow O(\log^2 n)$ per update
To rebalance we have to make rotations

We have to compute the segments which are mapped to the nodes around the point of rotation

To amortize away this work use weight balance trees (BB[α])
Summary: segment tree

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td>$O(\log(n))$</td>
</tr>
<tr>
<td>Insert</td>
<td>$O(\log^2(n))$</td>
</tr>
<tr>
<td>Delete</td>
<td>$O(\log^2(n))$</td>
</tr>
</tbody>
</table>
Results (1) (SWAT 2008, HK)

• A very simple data structure for shortest segment (in a nested family) $O(\log(n))$ time, and $O(\log_B(n))$ I/Os per op

• A data structure for longest prefix in a collection of arbitrary strings $O(\log(n) + |q|)$ time and $O(\log_B(n) + |q|/B)$ I/Os per op

both take linear space
Shortest nested segment
Shortest nested segment

Use a segment tree as before
We can maintain only the shortest among all segments mapped to a node.
Observe (1) - any segment appears somewhere

Observe (2) - Only one among a pair of siblings has a segment
As before in $O(\log(n))$ time
Insert
Rotations?
Shortest Nested Segments - Rotations
Shortest Nested Segments - Rotations
Delete
Delete
Delete
Results (1) (SWAT 2008, HK)

- A very simple data structure for shortest segment (in a nested family) $O(\log(n))$ time, and $O(\log_B(n))$ I/Os per op

- A data structure for longest prefix in a collection of arbitrary strings $O(\log(n) + |q|)$ time and $O(\log_B(n) + |q|/B)$ I/Os per op

both take linear space
Use the B-tree as a segment tree
Keep only the shortest at each node
Same as before.

$O(\log_B(n))$ I/Os.
Split/merge/borrow analogous to rotations
Split/merge/borrow analogous to rotations
Results (1) (SWAT 2008, HK)

- A very simple data structure for shortest segment (in a nested family) $O(\log(n))$ time, and $O(\log_B(n))$ I/Os per op

- A data structure for longest prefix in a collection of arbitrary strings $O(\log(n) + |q|)$ time and $O(\log_B(n) + |q|/B)$ I/Os per op

both take linear space
Combine

- Combine with the string B-tree of Ferragina and Grossi (JACM 99)
A Patricia trie of the keys
Results (2) (STOC 2003, KMT)

- A simple data structure for nested segments with priorities
 \(O(\log(n))\) time per op,
 \(O(n)\) space (uses dynamic trees)

- A data structure for general segments
 \(O(\log(n))\) time per query/insert but delete takes \(O(\log(n)\log\log(n))\) time,
 \(O(n\log\log(n))\) space
Containment tree:
The parent of a segment v is the smallest segment containing v
Nested Intervals

Query:
Starting node $s =$ smallest interval containing the query point

Relevant priorities are on the path from s to the root.

Problem: path may be long...
Dynamic trees know how to do that

Want to use a dynamic tree to represent the containment tree.
Dynamic trees

find min along path

link

O(log n) time per operation
cut
Use a dynamic tree to represent the containment tree

Problem:
Updates => Many cuts & links
Binarization

Leftmost child of v => Left child of v
Any other child of v => right child of its left sibling

Adjust costs:
Left edge => priority of parent
Right edge => \(\infty\)
Insert (Cont.)

Constant number of links and cuts
Summary

- **Containment tree C**
 - Query = min cost on path from starting point to root
- Represent C by binarized version B
- Represent B by dynamic tree D
- How do you find the point to start the query?
- How do you find the edges to cut?
How do you start the query?

Use a balanced search tree on the endpoints

Min(Mincost(), pri())
query (cont)

Mincost(●)
Results (2) (STOC 2003, KMT)

- A simple data structure for nested segments with priorities
 $O(\log(n))$ time per op,
 $O(n)$ space (uses dynamic trees)

- A data structure for general segments
 $O(\log(n))$ time per query/insert but delete takes $O(\log(n)\log\log(n))$ time,
 $O(n\log\log(n))$ space
Results (3) (SODA 2005, AAY)

• A data structure for general segments $O(\log(n))$ time per query/insert but delete takes $O(\log(n)\log\log(n))$ time, $O(n\log\log(n))$ space

• $O(\log_B(n))$ I/Os per operation
Further research

• Cache oblivious solution for strings (static solution by Brodal & Fagerberg SODA’06)
• Simplify the solutions
• Implement the shortest segment data structure
• Better solutions for higher dimensions