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Status of Certain Streaming Problems, Jan 2009

Problems:

• Distinct elements

• Frequency moments

• Empirical entropy

One-pass, randomized, ε-approximate:

• Space upper bound: Õ(ε−2)

• Space lower bound: Ω̃(ε−2)

Do multiple passes help?
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Status of Certain Streaming Problems, Jan 2009

Problems:

• Distinct elements , F0

• Frequency moments , Fk =
∑m

i=1 freq(i)k
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Status of Certain Streaming Problems, Jan 2009

Problems:

• Distinct elements , F0

• Frequency moments , Fk =
∑m

i=1 freq(i)k

• Empirical entropy , H =
∑m

i=1(freq(i)/m)·log(m/freq(i))

One-pass, randomized, ε-approximate:
∣∣∣
output

answer
− 1

∣∣∣ ≤ ε

• Space upper bound: Õ(ε−2)

• Space lower bound: Ω̃(ε−2)

Do multiple passes help? If not, why not?
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The Gap-Hamming-Distance Problem

Input: Alice gets x ∈ {0, 1}n, Bob gets y ∈ {0, 1}n.

Output:

• ghd(x, y) = 1 if ∆(x, y) > n
2 +

√
n

• ghd(x, y) = 0 if ∆(x, y) < n
2 −

√
n

Problem: Design randomized, constant error protocol to solve this

Cost: Worst case number of bits communicated

1

x =

y =

0

0 0

0 0

0 0

0 1 1

11 0 0

00 1

10

1 1

0

0

n = 12; ∆(x, y) = 3 ∈ [6 −
√

12, 6 +
√

12]
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The Reductions

E.g., Distinct Elements (Other problems: similar)

! :

y = 0 0 0 0 11 0 0 10 0 1

(1,
0)

(3,
0)
(4,
0)

(2,
1)

(5,
1)
(6,
0)

(8,
0)

(9,
0)

(9,
0)

(12
,1)

(11
,0)

(10
,0)

(12
,1)

(11
,0)

(10
,0)

x = 0 0 0 0 1 1 00 11 1 0

(1,
0)

(3,
0)
(4,
0)

(6,
0)

(8,
0)

(9,
0)

(2,
0)

(5,
0)

(9,
1)" :

Alice: x %−→ σ = 〈(1, x1), (2, x2), . . . , (n, xn)〉
Bob: y %−→ τ = 〈(1, y1), (2, y2), . . . , (n, yn)〉

Notice: F0(σ ◦ τ) = n + ∆(x, y) =





< 3n

2 −
√

n, or

> 3n
2 +

√
n.

Set ε = 1√
n
.
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Communication to Streaming

p-pass streaming algorithm =⇒ (2p − 1)-round communication protocol

messages = memory contents of streaming algorithm

And Thus

Previous results [Indyk-Woodruff’03], [Woodruff’04],

[C.-Cormode-McGregor’07]:

• For one-round protocols, R→(ghd) = Ω(n)

• Implies the Ω̃(ε−2) streaming lower bounds
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Communication to Streaming

p-pass streaming algorithm =⇒ (2p − 1)-round communication protocol

messages = memory contents of streaming algorithm

And Thus

Previous results [Indyk-Woodruff’03], [Woodruff’04],

[C.-Cormode-McGregor’07]:

• For one-round protocols, R→(ghd) = Ω(n)

• Implies the Ω̃(ε−2) streaming lower bounds

Key open questions:

• What is the unrestricted randomized complexity R(ghd)?

• Better algorithm for Distinct Elements (or Fk, or H) using two passes?
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Our Results

Previous Results (Communication):

• One-round (one-way) lower bound: R→(ghd) = Ω(n) [Woodruff’04]

• Simplification, clever reduction from index [Jayram-Kumar-Sivakumar]

• Multi-round case: R(ghd) = Ω(
√

n) [Folklore]
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Our Results

Previous Results (Communication):

• One-round (one-way) lower bound: R→(ghd) = Ω(n) [Woodruff’04]

• Simplification, clever reduction from index [Jayram-Kumar-Sivakumar]

Hard distribution “contrived,” non-uniform

• Multi-round case: R(ghd) = Ω(
√

n) [Folklore]

Reduction from disjointness using “repetition code”

Hard distribution again far from uniform

What we show:

• Theorem 1: Ω(n) lower bound for any O(1)-round protocol

Holds under uniform distribution
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Our Results

Previous Results (Communication):

• One-round (one-way) lower bound: R→(ghd) = Ω(n) [Woodruff’04]

• Simplification, clever reduction from index [Jayram-Kumar-Sivakumar]

Hard distribution “contrived,” non-uniform

• Multi-round case: R(ghd) = Ω(
√

n) [Folklore]

Reduction from disjointness using “repetition code”

Hard distribution again far from uniform

What we show:

• Theorem 1: Ω(n) lower bound for any O(1)-round protocol

Holds under uniform distribution

• Theorem 2: one-round, deterministic: D→(ghd) = n − Θ(
√

n log n)

• Theorem 3: R→(ghd) = Ω(n) (simpler proof, uniform distrib)
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Technique: Round Elimination

Base Case Lemma: There is no “nice” 0-round ghd protocol.

Round Elimination Lemma: If there is a “nice” k-round ghd protocol,

then there is a “nice” (k − 1)-round ghd protocol.

• The (k − 1)-round protocol will be solving a “simpler” problem

• Parameters degrade with each round elimination step
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Amit Chakrabarti 7



Gap-Hamming Lower Bound March 27, 2009

Technique: Round Elimination

Base Case Lemma: There is no 0-round ghd protocol with error < 1
2 .

Round Elimination Lemma: If there is a “nice” k-round ghd protocol,

then there is a “nice” (k − 1)-round ghd′ protocol.

• The (k − 1)-round protocol will be solving a “simpler” problem
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Parametrized Gap-Hamming-Distance Problem

The problem:

ghdc,n(x, y) =






1 , if ∆(x, y) ≥ n/2 + c
√

n ,

0 , if ∆(x, y) ≤ n/2 − c
√

n ,

$ , otherwise.
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The problem:

ghdc,n(x, y) =






1 , if ∆(x, y) ≥ n/2 + c
√

n ,

0 , if ∆(x, y) ≤ n/2 − c
√

n ,

$ , otherwise.

Hard input distribution:

µc,n : uniform over (x, y) such that |∆(x, y) − n/2| ≥ c
√

n
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Parametrized Gap-Hamming-Distance Problem

The problem:

ghdc,n(x, y) =






1 , if ∆(x, y) ≥ n/2 + c
√

n ,

0 , if ∆(x, y) ≤ n/2 − c
√

n ,

$ , otherwise.

Hard input distribution:

µc,n : uniform over (x, y) such that |∆(x, y) − n/2| ≥ c
√

n

Protocol assumptions (eventually, will lead to contradiction):

• Deterministic k-round protocol for ghdc,n

• Each message is s , n bits

• Error probability ≤ ε, under distribution µc,n
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Round Elimination

Main Construction: Given k-round protocol P for ghdc,n, construct

(k − 1)-round protocol Q for ghdc′,n′
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Round Elimination

Main Construction: Given k-round protocol P for ghdc,n, construct

(k − 1)-round protocol Q for ghdc′,n′

First Attempt:

• Fix Alice’s first message m in P, suitably

• Protocol Q1:

– Input: x′, y′ ∈ {0, 1}A where A ⊆ [n], |A| = n′

– Extend x′ → x s.t. Alice sends m on input x

– Extend y′ → y uniformly at random

– Output P(x, y); Note: first message unnecessary
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First Attempt:
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– Input: x′, y′ ∈ {0, 1}A where A ⊆ [n], |A| = n′

– Extend x′ → x s.t. Alice sends m on input x

– Extend y′ → y uniformly at random

– Output P(x, y); Note: first message unnecessary

• Errors: Q1 correct, unless

– BAD1: ghdc′,n′(x′, y′) .= ghdc,n(x, y).

– BAD2: ghdc,n(x, y) .= P(x, y).
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Round Elimination

Main Construction: Given k-round protocol P for ghdc,n, construct

(k − 1)-round protocol Q for ghdc′,n′

First Attempt:

• Fix Alice’s first message m in P, suitably

• Protocol Q1:

– Input: x′, y′ ∈ {0, 1}A where A ⊆ [n], |A| = n′

– Extend x′ → x s.t. Alice sends m on input x (why possible?)

– Extend y′ → y uniformly at random

– Output P(x, y); Note: first message unnecessary

• Errors: Q1 correct, unless

– BAD1: ghdc′,n′(x′, y′) .= ghdc,n(x, y).

– BAD2: ghdc,n(x, y) .= P(x, y).

Amit Chakrabarti 9-d



Gap-Hamming Lower Bound March 27, 2009

VC-Dimension

Fixing Alice’s first message:

• Call x good if Pry[P(x, y) .= ghdc,n(x, y)] ≤ 2ε

Then #{good x} ≥ 2n−1 (Markov)

• Let M = Mm = {good x : Alice sends m on input x}.

• Fix m to maximize |M |; then |M | ≥ 2n−1−s.
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VC-Dimension

Fixing Alice’s first message:

• Call x good if Pry[P(x, y) .= ghdc,n(x, y)] ≤ 2ε

Then #{good x} ≥ 2n−1 (Markov)

• Let M = Mm = {good x : Alice sends m on input x}.

• Fix m to maximize |M |; then |M | ≥ 2n−1−s.

Shattering:

• Say S ⊆ {0, 1}n shatters A ⊆ [n] if #{x|A : x ∈ S} = 2|A|

• VCD(S) := size of largest A shattered by S

Sauer’s Lemma: If VCD(S) < αn then |S| < 2nH(α).
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VC-Dimension

Fixing Alice’s first message:

• Call x good if Pry[P(x, y) .= ghdc,n(x, y)] ≤ 2ε

Then #{good x} ≥ 2n−1 (Markov)

• Let M = Mm = {good x : Alice sends m on input x}.

• Fix m to maximize |M |; then |M | ≥ 2n−1−s.

Shattering:

• Say S ⊆ {0, 1}n shatters A ⊆ [n] if #{x|A : x ∈ S} = 2|A|

• VCD(S) := size of largest A shattered by S

Sauer’s Lemma: If VCD(S) < αn then |S| < 2nH(α).

Corollary: VCD(M) ≥ n′ := n/3 (Because s , n)

Extend x′ → x: pick x ∈ M such that x′ = x|A

Amit Chakrabarti 10-c



Gap-Hamming Lower Bound March 27, 2009

The First Bad Event

Recall BAD1: ghdc′,n′(x′, y′) .= ghdc,n(x, y).

Notation: x = x′ ◦ x′′, y = y′ ◦ y′′, n = n′ + n′′.
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The First Bad Event

Recall BAD1: ghdc′,n′(x′, y′) .= ghdc,n(x, y).

Notation: x = x′ ◦ x′′, y = y′ ◦ y′′, n = n′ + n′′.

Definition: x′′, y′′ nearly orthogonal if |∆(x′′, y′′) − n′′/2| < 2
√

n′′.
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The First Bad Event

Recall BAD1: ghdc′,n′(x′, y′) .= ghdc,n(x, y).

Notation: x = x′ ◦ x′′, y = y′ ◦ y′′, n = n′ + n′′.

Definition: x′′, y′′ nearly orthogonal if |∆(x′′, y′′) − n′′/2| < 2
√

n′′.

Lemma: Pry′′ [x′′, y′′ nearly orthogonal] > 7/8. (Binom distrib tail)
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The First Bad Event

Recall BAD1: ghdc′,n′(x′, y′) .= ghdc,n(x, y).

Notation: x = x′ ◦ x′′, y = y′ ◦ y′′, n = n′ + n′′.

Definition: x′′, y′′ nearly orthogonal if |∆(x′′, y′′) − n′′/2| < 2
√

n′′.

Lemma: Pry′′ [x′′, y′′ nearly orthogonal] > 7/8. (Binom distrib tail)

Lemma: If x′′, y′′ nearly orthogonal and c′ ≥ 2c, then

• ghdc′,n′(x′, y′) = 1 =⇒ ghdc,n(x, y) = 1

• ghdc′,n′(x′, y′) = 0 =⇒ ghdc,n(x, y) = 0
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The First Bad Event

Recall BAD1: ghdc′,n′(x′, y′) .= ghdc,n(x, y).

Notation: x = x′ ◦ x′′, y = y′ ◦ y′′, n = n′ + n′′.

Definition: x′′, y′′ nearly orthogonal if |∆(x′′, y′′) − n′′/2| < 2
√

n′′.

Lemma: Pry′′ [x′′, y′′ nearly orthogonal] > 7/8. (Binom distrib tail)

Lemma: If x′′, y′′ nearly orthogonal and c′ ≥ 2c, then

• ghdc′,n′(x′, y′) = 1 =⇒ ghdc,n(x, y) = 1

• ghdc′,n′(x′, y′) = 0 =⇒ ghdc,n(x, y) = 0

Corollary: Pr[BAD1] < 1/8.
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The Second Bad Event

Recall BAD2: ghdc,n(x, y) .= P(x, y).

Bounding Pr[BAD2] is subtle:

• x is good, so Pr[P errs | x] ≤ 2ε

– But this requires (x, y) ∼ µc,n

• Random extension (x′, y′) → (x, y) is not ∼ µc,n.
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The Second Bad Event

Recall BAD2: ghdc,n(x, y) .= P(x, y).

Bounding Pr[BAD2] is subtle:

• x is good, so Pr[P errs | x] ≤ 2ε

– But this requires (x, y) ∼ µc,n

• Random extension (x′, y′) → (x, y) is not ∼ µc,n.

• Actual distrib (fixed x, random y):

– (x, y) ∼ (µc′,n′ | x) ⊗ Unifn′′

– y uniform over a subset of {0, 1}n, just like in µc,n
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The Second Bad Event

Recall BAD2: ghdc,n(x, y) .= P(x, y).

Bounding Pr[BAD2] is subtle:

• x is good, so Pr[P errs | x] ≤ 2ε

– But this requires (x, y) ∼ µc,n

• Random extension (x′, y′) → (x, y) is not ∼ µc,n.

• Actual distrib (fixed x, random y):

– (x, y) ∼ (µc′,n′ | x) ⊗ Unifn′′

– y uniform over a subset of {0, 1}n, just like in µc,n

Lemma: Pr[BAD2] = O(ε).
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Round Elimination, First Attempt (Recap)

Putting it together:

• P is k-round ε-error protocol for ghdc,n

• Q1 is (k − 1)-round ε′-error protocol for ghdc′,n′ with

– c′ = 2c, n′ = n/3

– ε′ = 1/8 + O(ε)

Second attempt: protocol Q:

• Repeat Q1 2O(k) times in parallel, take majority

• Blows up communication by 2O(k)

• Error is now ε′ = O(ε)

– Analysis even more subtle: not just a Chernoff bound
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Eventual Round Elimination Lemma

Lemma: If there is a k-round, ε-error protocol for ghdc,n in which each

player sends s , n bits, then there is a (k − 1)-round, O(ε)-error protocol

for ghd2c,n/3 in which each player sends 2O(k)s bits.

Recall Base Case Lemma: There is no zero-round protocol with error < 1/2.
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Eventual Round Elimination Lemma

Lemma: If there is a k-round, ε-error protocol for ghdc,n in which each

player sends s , n bits, then there is a (k − 1)-round, O(ε)-error protocol

for ghd2c,n/3 in which each player sends 2O(k)s bits.

Recall Base Case Lemma: There is no zero-round protocol with error < 1/2.

Consequence: Main Theorem

Theorem: There is no o(n)-bit, 1
3 -error, O(1)-round randomized protocol

for ghdc,n. In other words, RO(1)(ghd) = Ω(n).
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Eventual Round Elimination Lemma

Lemma: If there is a k-round, ε-error protocol for ghdc,n in which each

player sends s , n bits, then there is a (k − 1)-round, O(ε)-error protocol

for ghd2c,n/3 in which each player sends 2O(k)s bits.

Recall Base Case Lemma: There is no zero-round protocol with error < 1/2.

Consequence: Main Theorem

Theorem: There is no o(n)-bit, 1
3 -error, O(1)-round randomized protocol

for ghdc,n. In other words, RO(1)(ghd) = Ω(n).

More Specific: Rk(ghd) = n/2O(k2).
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Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and Fk has been an important

open question since at least 2003. Why did it remain open for so long?

Amit Chakrabarti 15



Gap-Hamming Lower Bound March 27, 2009

Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and Fk has been an important

open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny!

Amit Chakrabarti 15-a



Gap-Hamming Lower Bound March 27, 2009

Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and Fk has been an important

open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny! Resists the “usual” attacks:

• Rectangle-based methods (discrepancy/corruption)

• Approximate polynomial degree

• Pattern matrix, Factorization norms [Sherstov’08], [Linial-Shraibman’07]

• Information complexity [C.-Shi-Wirth-Yao’01], [BarYossef-J.-K.-S.’02]
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Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and Fk has been an important

open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny! Resists the “usual” attacks:

• Rectangle-based methods (discrepancy/corruption)

Matrix has large near-monochromatic rectangles

• Approximate polynomial degree

Underlying predicate has approx degree Õ(
√

n)

• Pattern matrix, Factorization norms [Sherstov’08], [Linial-Shraibman’07]

• Information complexity [C.-Shi-Wirth-Yao’01], [BarYossef-J.-K.-S.’02]
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I’m biased (I helped invent it, so it’s my pet technique)
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Open Problems

1. The key problem here: Settle R(ghd).

2. More generally: Understand communication complexity of

“gap problems” better.

3. This should help with other streaming problems,

e.g., longest increasing subsequence.
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