Lower Bounds for Gap-Hamming-Distance and Consequences for Data Stream Algorithms

Amit Chakrabarti

(Joint work with Joshua Brody)
Dartmouth College

DIMACS/DyDAn Workshop, March 2009

Status of Certain Streaming Problems, Jan 2009

Problems:

- Distinct elements
- Frequency moments
- Empirical entropy

One-pass, randomized, ε-approximate:

- Space upper bound: $\widetilde{O}\left(\varepsilon^{-2}\right)$
- Space lower bound: $\widetilde{\Omega}\left(\varepsilon^{-2}\right)$

Do multiple passes help?

Status of Certain Streaming Problems, Jan 2009

Problems:

- Distinct elements, $\quad F_{0}$
- Frequency moments, $\quad F_{k}=\sum_{i=1}^{m} \mathrm{freq}(i)^{k}$
- Empirical entropy, $\quad H=\sum_{i=1}^{m}(\operatorname{freq}(i) / m) \cdot \log (m / \operatorname{freq}(i))$

One-pass, randomized, ε-approximate: $\left|\frac{\text { output }}{\text { answer }}-1\right| \leq \varepsilon$

- Space upper bound: $\widetilde{O}\left(\varepsilon^{-2}\right)$
- Space lower bound: $\widetilde{\Omega}\left(\varepsilon^{-2}\right)$

Do multiple passes help?

Status of Certain Streaming Problems, Jan 2009

Problems:

- Distinct elements, $\quad F_{0}$
- Frequency moments, $\quad F_{k}=\sum_{i=1}^{m} \mathrm{freq}(i)^{k}$
- Empirical entropy, $\quad H=\sum_{i=1}^{m}(\operatorname{freq}(i) / m) \cdot \log (m / \operatorname{freq}(i))$

One-pass, randomized, ε-approximate: $\left|\frac{\text { output }}{\text { answer }}-1\right| \leq \varepsilon$

- Space upper bound: $\widetilde{O}\left(\varepsilon^{-2}\right)$
- Space lower bound: $\widetilde{\Omega}\left(\varepsilon^{-2}\right)$

Do multiple passes help? If not, why not?

The Gap-Hamming-Distance Problem

Input: Alice gets $x \in\{0,1\}^{n}$, Bob gets $y \in\{0,1\}^{n}$.
Output:

- $\operatorname{GHD}(x, y)=1$ if $\Delta(x, y)>\frac{n}{2}+\sqrt{n}$
- $\operatorname{GHD}(x, y)=0$ if $\Delta(x, y)<\frac{n}{2}-\sqrt{n}$

Problem: Design randomized, constant error protocol to solve this
Cost: Worst case number of bits communicated

$$
\begin{aligned}
x= & \left.\begin{array}{lllllllll|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\
y= & \begin{array}{llllll|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\
& n=12 ; \quad \Delta(x, y)=3 \in[6-\sqrt{12}, 6+\sqrt{12}]
\end{array} \\
& n=1
\end{array}\right]
\end{aligned}
$$

The Reductions

E.g., Distinct Elements (Other problems: similar)

$$
\begin{aligned}
& x=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\
\hline
\end{array} \\
& \sigma: \\
& \text { (2) } \\
& y=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\
\hline
\end{array} \\
& \tau \text { : }
\end{aligned}
$$

Alice: $x \longmapsto \sigma=\left\langle\left(1, x_{1}\right),\left(2, x_{2}\right), \ldots,\left(n, x_{n}\right)\right\rangle$
Bob: $y \longmapsto \tau=\left\langle\left(1, y_{1}\right),\left(2, y_{2}\right), \ldots,\left(n, y_{n}\right)\right\rangle$
Notice: $F_{0}(\sigma \circ \tau)=n+\Delta(x, y)=\left\{\begin{array}{l}<\frac{3 n}{2}-\sqrt{n}, \text { or } \\ >\frac{3 n}{2}+\sqrt{n} .\end{array} \quad\right.$ Set $\varepsilon=\frac{1}{\sqrt{n}}$.

Communication to Streaming

p-pass streaming algorithm $\Longrightarrow(2 p-1)$-round communication protocol messages $=$ memory contents of streaming algorithm

And Thus

Previous results

- For one-round protocols, $\mathrm{R}^{\rightarrow}(\mathrm{GHD})=\Omega(n)$
- Implies the $\widetilde{\Omega}\left(\varepsilon^{-2}\right)$ streaming lower bounds

Communication to Streaming

p-pass streaming algorithm $\Longrightarrow(2 p-1)$-round communication protocol messages $=$ memory contents of streaming algorithm

Previous results
[C.-Cormode-McGregor'07]:

- For one-round protocols, $\mathrm{R}^{\rightarrow}(\mathrm{GHD})=\Omega(n)$
- Implies the $\widetilde{\Omega}\left(\varepsilon^{-2}\right)$ streaming lower bounds

Key open questions:

- What is the unrestricted randomized complexity R (GHD)?
- Better algorithm for Distinct Elements (or F_{k}, or H) using two passes?

Our Results

Previous Results (Communication):

- One-round (one-way) lower bound: $\mathrm{R}^{\rightarrow}(\mathrm{GHD})=\Omega(n) \quad$ [Woodruff'04]
- Simplification, clever reduction from INDEX [Jayram-Kumar-Sivakumar]
- Multi-round case: $\mathrm{R}(\mathrm{GHD})=\Omega(\sqrt{n})$

Our Results

Previous Results (Communication):

- One-round (one-way) lower bound: $\mathrm{R}^{\rightarrow}(\mathrm{GHD})=\Omega(n) \quad$ [Woodruff'04]
- Simplification, clever reduction from index [Jayram-Kumar-Sivakumar] Hard distribution "contrived," non-uniform
- Multi-round case: $\mathrm{R}(\mathrm{GHD})=\Omega(\sqrt{n})$

Our Results

Previous Results (Communication):

- One-round (one-way) lower bound: $\mathrm{R}^{\rightarrow}(\mathrm{GHD})=\Omega(n) \quad$ [Woodruff'04]
- Simplification, clever reduction from INDEX [Jayram-Kumar-Sivakumar]

Hard distribution "contrived," non-uniform

- Multi-round case: $\mathrm{R}(\mathrm{GHD})=\Omega(\sqrt{n})$

Reduction from DISJOINTNESS using "repetition code"
Hard distribution again far from uniform

Our Results

Previous Results (Communication):

- One-round (one-way) lower bound: $\mathrm{R}^{\rightarrow}(\mathrm{GHD})=\Omega(n) \quad$ [Woodruff'04]
- Simplification, clever reduction from INDEX [Jayram-Kumar-Sivakumar] Hard distribution "contrived," non-uniform
- Multi-round case: $\mathrm{R}(\mathrm{GHD})=\Omega(\sqrt{n})$

Reduction from DISJOINTNESS using "repetition code"
Hard distribution again far from uniform
What we show:

- Theorem 1: $\Omega(n)$ lower bound for any $O(1)$-round protocol

Holds under uniform distribution

Our Results

Previous Results (Communication):

- One-round (one-way) lower bound: $\mathrm{R}^{\rightarrow}(\mathrm{GHD})=\Omega(n) \quad$ [Woodruff'04]
- Simplification, clever reduction from INDEX [Jayram-Kumar-Sivakumar] Hard distribution "contrived," non-uniform
- Multi-round case: $\mathrm{R}(\mathrm{GHD})=\Omega(\sqrt{n})$

Reduction from DISJOINTNESS using "repetition code"
Hard distribution again far from uniform
What we show:

- Theorem 1: $\Omega(n)$ lower bound for any $O(1)$-round protocol Holds under uniform distribution
- Theorem 2: one-round, deterministic: $\mathrm{D}^{\rightarrow}(\operatorname{GHD})=n-\Theta(\sqrt{n} \log n)$
- Theorem 3: $\mathrm{R}^{\rightarrow}(\mathrm{GHD})=\Omega(n) \quad$ (simpler proof, uniform distrib)

Technique: Round Elimination

Base Case Lemma: There is no "nice" 0 -round GHD protocol.

Round Elimination Lemma: If there is a "nice" k-round GHD protocol, then there is a "nice" ($k-1$)-round GHD protocol.

Technique: Round Elimination

Base Case Lemma: There is no 0 -round GHD protocol with error $<\frac{1}{2}$.

Round Elimination Lemma: If there is a "nice" k-round GHD protocol, then there is a "nice" ($k-1$)-round GHD' protocol.

Technique: Round Elimination

Base Case Lemma: There is no 0 -round GHD protocol with error $<\frac{1}{2}$.

Round Elimination Lemma: If there is a "nice" k-round GHD protocol, then there is a "nice" ($k-1$)-round GHD' protocol.

- The $(k-1)$-round protocol will be solving a "simpler" problem
- Parameters degrade with each round elimination step

Parametrized Gap-Hamming-Distance Problem

The problem:

$$
\operatorname{GHD}_{c, n}(x, y)= \begin{cases}1, & \text { if } \Delta(x, y) \geq n / 2+c \sqrt{n} \\ 0, & \text { if } \Delta(x, y) \leq n / 2-c \sqrt{n} \\ \star, & \text { otherwise }\end{cases}
$$

Parametrized Gap-Hamming-Distance Problem

The problem:

$$
\operatorname{GHD}_{c, n}(x, y)= \begin{cases}1, & \text { if } \Delta(x, y) \geq n / 2+c \sqrt{n} \\ 0, & \text { if } \Delta(x, y) \leq n / 2-c \sqrt{n} \\ \star, & \text { otherwise }\end{cases}
$$

Hard input distribution:

$$
\mu_{c, n}: \text { uniform over }(x, y) \text { such that }|\Delta(x, y)-n / 2| \geq c \sqrt{n}
$$

Parametrized Gap-Hamming-Distance Problem

The problem:

$$
\operatorname{GHD}_{c, n}(x, y)= \begin{cases}1, & \text { if } \Delta(x, y) \geq n / 2+c \sqrt{n} \\ 0, & \text { if } \Delta(x, y) \leq n / 2-c \sqrt{n} \\ \star, & \text { otherwise }\end{cases}
$$

Hard input distribution:

$$
\mu_{c, n}: \text { uniform over }(x, y) \text { such that }|\Delta(x, y)-n / 2| \geq c \sqrt{n}
$$

Protocol assumptions (eventually, will lead to contradiction):

- Deterministic k-round protocol for $\mathrm{GHD}_{c, n}$
- Each message is $s \ll n$ bits
- Error probability $\leq \varepsilon$, under distribution $\mu_{c, n}$

Round Elimination

Main Construction: Given k-round protocol \mathcal{P} for $\mathrm{GHD}_{c, n}$, construct ($k-1$)-round protocol \mathcal{Q} for $\mathrm{GHD}_{c^{\prime}, n^{\prime}}$

Round Elimination

Main Construction: Given k-round protocol \mathcal{P} for $\mathrm{GHD}_{c, n}$, construct ($k-1$)-round protocol \mathcal{Q} for $\mathrm{GHD}_{c^{\prime}, n^{\prime}}$

First Attempt:

- Fix Alice's first message m in \mathcal{P}, suitably

Round Elimination

Main Construction: Given k-round protocol \mathcal{P} for $\mathrm{GHD}_{c, n}$, construct ($k-1$)-round protocol \mathcal{Q} for $\mathrm{GHD}_{c^{\prime}, n^{\prime}}$

First Attempt:

- Fix Alice's first message m in \mathcal{P}, suitably
- Protocol \mathcal{Q}_{1} :
- Input: $x^{\prime}, y^{\prime} \in\{0,1\}^{A}$ where $A \subseteq[n],|A|=n^{\prime}$
- Extend $x^{\prime} \rightarrow x$ s.t. Alice sends m on input x
- Extend $y^{\prime} \rightarrow y$ uniformly at random
- Output $\mathcal{P}(x, y)$; Note: first message unnecessary

Round Elimination

Main Construction: Given k-round protocol \mathcal{P} for $\mathrm{GHD}_{c, n}$, construct ($k-1$)-round protocol \mathcal{Q} for $\mathrm{GHD}_{c^{\prime}, n^{\prime}}$

First Attempt:

- Fix Alice's first message m in \mathcal{P}, suitably
- Protocol \mathcal{Q}_{1} :
- Input: $x^{\prime}, y^{\prime} \in\{0,1\}^{A}$ where $A \subseteq[n],|A|=n^{\prime}$
- Extend $x^{\prime} \rightarrow x$ s.t. Alice sends m on input x
- Extend $y^{\prime} \rightarrow y$ uniformly at random
- Output $\mathcal{P}(x, y)$; Note: first message unnecessary
- Errors: \mathcal{Q}_{1} correct, unless
$-B A D_{1}: \operatorname{GHD}_{c^{\prime}, n^{\prime}}\left(x^{\prime}, y^{\prime}\right) \neq \operatorname{GHD}_{c, n}(x, y)$.
$-B A D_{2}: \operatorname{GHD}_{c, n}(x, y) \neq \mathcal{P}(x, y)$.

Round Elimination

Main Construction: Given k-round protocol \mathcal{P} for $\mathrm{GHD}_{c, n}$, construct ($k-1$)-round protocol \mathcal{Q} for $\mathrm{GHD}_{c^{\prime}, n^{\prime}}$

First Attempt:

- Fix Alice's first message m in \mathcal{P}, suitably
- Protocol \mathcal{Q}_{1} :
- Input: $x^{\prime}, y^{\prime} \in\{0,1\}^{A}$ where $A \subseteq[n],|A|=n^{\prime}$
- Extend $x^{\prime} \rightarrow x$ s.t. Alice sends m on input $x \quad$ (why possible?)
- Extend $y^{\prime} \rightarrow y$ uniformly at random
- Output $\mathcal{P}(x, y)$; Note: first message unnecessary
- Errors: \mathcal{Q}_{1} correct, unless
$-B A D_{1}: \operatorname{GHD}_{c^{\prime}, n^{\prime}}\left(x^{\prime}, y^{\prime}\right) \neq \operatorname{GHD}_{c, n}(x, y)$.
$-B A D_{2}: \operatorname{GHD}_{c, n}(x, y) \neq \mathcal{P}(x, y)$.

VC-Dimension

Fixing Alice's first message:

- Call x good if $\operatorname{Pr}_{y}\left[\mathcal{P}(x, y) \neq \operatorname{GHD}_{c, n}(x, y)\right] \leq 2 \varepsilon$

Then $\#\{\operatorname{good} x\} \geq 2^{n-1} \quad$ (Markov)

- Let $M=M_{\mathrm{m}}=\{\operatorname{good} x:$ Alice sends m on input $x\}$.
- Fix m to maximize $|M|$; then $|M| \geq 2^{n-1-s}$.

VC-Dimension

Fixing Alice's first message:

- Call x good if $\operatorname{Pr}_{y}\left[\mathcal{P}(x, y) \neq \operatorname{GHD}_{c, n}(x, y)\right] \leq 2 \varepsilon$

Then $\#\{\operatorname{good} x\} \geq 2^{n-1} \quad$ (Markov)

- Let $M=M_{\mathrm{m}}=\{\operatorname{good} x$: Alice sends m on input $x\}$.
- Fix m to maximize $|M|$; then $|M| \geq 2^{n-1-s}$.

Shattering:

- Say $S \subseteq\{0,1\}^{n}$ shatters $A \subseteq[n]$ if $\#\left\{\left.x\right|_{A}: x \in S\right\}=2^{|A|}$
- $\operatorname{VCD}(S):=$ size of largest A shattered by S

Sauer's Lemma: If $\operatorname{VCD}(S)<\alpha n$ then $|S|<2^{n H(\alpha)}$.

VC-Dimension

Fixing Alice's first message:

- Call x good if $\operatorname{Pr}_{y}\left[\mathcal{P}(x, y) \neq \operatorname{GHD}_{c, n}(x, y)\right] \leq 2 \varepsilon$

Then $\#\{\operatorname{good} x\} \geq 2^{n-1} \quad$ (Markov)

- Let $M=M_{\mathrm{m}}=\{\operatorname{good} x$: Alice sends m on input $x\}$.
- Fix m to maximize $|M|$; then $|M| \geq 2^{n-1-s}$.

Shattering:

- Say $S \subseteq\{0,1\}^{n}$ shatters $A \subseteq[n]$ if $\#\left\{\left.x\right|_{A}: x \in S\right\}=2^{|A|}$
- $\operatorname{VCD}(S):=$ size of largest A shattered by S

Sauer's Lemma: If $\operatorname{VCD}(S)<\alpha n$ then $|S|<2^{n H(\alpha)}$.
Corollary: $\operatorname{VCD}(M) \geq n^{\prime}:=n / 3 \quad$ (Because $s \ll n$)

VC-Dimension

Fixing Alice's first message:

- Call x good if $\operatorname{Pr}_{y}\left[\mathcal{P}(x, y) \neq \operatorname{GHD}_{c, n}(x, y)\right] \leq 2 \varepsilon$

Then $\#\{\operatorname{good} x\} \geq 2^{n-1} \quad$ (Markov)

- Let $M=M_{\mathrm{m}}=\{\operatorname{good} x$: Alice sends m on input $x\}$.
- Fix m to maximize $|M|$; then $|M| \geq 2^{n-1-s}$.

Shattering:

- Say $S \subseteq\{0,1\}^{n}$ shatters $A \subseteq[n]$ if $\#\left\{\left.x\right|_{A}: x \in S\right\}=2^{|A|}$
- $\operatorname{VCD}(S):=$ size of largest A shattered by S

Sauer's Lemma: If $\operatorname{VCD}(S)<\alpha n$ then $|S|<2^{n H(\alpha)}$.
Corollary: $\operatorname{VCD}(M) \geq n^{\prime}:=n / 3 \quad$ (Because $s \ll n$)
Extend $x^{\prime} \rightarrow x$: pick $x \in M$ such that $x^{\prime}=\left.x\right|_{A}$

The First Bad Event

Recall $B A D_{1}: \operatorname{GHD}_{c^{\prime}, n^{\prime}}\left(x^{\prime}, y^{\prime}\right) \neq \operatorname{GHD}_{c, n}(x, y)$.
Notation: $x=x^{\prime} \circ x^{\prime \prime}, y=y^{\prime} \circ y^{\prime \prime}, n=n^{\prime}+n^{\prime \prime}$.

The First Bad Event

Recall $B A D_{1}: \operatorname{GHD}_{c^{\prime}, n^{\prime}}\left(x^{\prime}, y^{\prime}\right) \neq \operatorname{GHD}_{c, n}(x, y)$.
Notation: $x=x^{\prime} \circ x^{\prime \prime}, y=y^{\prime} \circ y^{\prime \prime}, n=n^{\prime}+n^{\prime \prime}$.
Definition: $x^{\prime \prime}, y^{\prime \prime}$ nearly orthogonal if $\left|\Delta\left(x^{\prime \prime}, y^{\prime \prime}\right)-n^{\prime \prime} / 2\right|<2 \sqrt{n^{\prime \prime}}$.

The First Bad Event

Recall $B A D_{1}: \operatorname{GHD}_{c^{\prime}, n^{\prime}}\left(x^{\prime}, y^{\prime}\right) \neq \operatorname{GHD}_{c, n}(x, y)$.
Notation: $x=x^{\prime} \circ x^{\prime \prime}, y=y^{\prime} \circ y^{\prime \prime}, n=n^{\prime}+n^{\prime \prime}$.
Definition: $x^{\prime \prime}, y^{\prime \prime}$ nearly orthogonal if $\left|\Delta\left(x^{\prime \prime}, y^{\prime \prime}\right)-n^{\prime \prime} / 2\right|<2 \sqrt{n^{\prime \prime}}$.

Lemma: $\operatorname{Pr}_{y^{\prime \prime}}\left[x^{\prime \prime}, y^{\prime \prime}\right.$ nearly orthogonal $]>7 / 8$. (Binom distrib tail)

The First Bad Event

Recall $B A D_{1}: \operatorname{GHD}_{c^{\prime}, n^{\prime}}\left(x^{\prime}, y^{\prime}\right) \neq \operatorname{GHD}_{c, n}(x, y)$.
Notation: $x=x^{\prime} \circ x^{\prime \prime}, y=y^{\prime} \circ y^{\prime \prime}, n=n^{\prime}+n^{\prime \prime}$.
Definition: $x^{\prime \prime}, y^{\prime \prime}$ nearly orthogonal if $\left|\Delta\left(x^{\prime \prime}, y^{\prime \prime}\right)-n^{\prime \prime} / 2\right|<2 \sqrt{n^{\prime \prime}}$.

Lemma: $\operatorname{Pr}_{y^{\prime \prime}}\left[x^{\prime \prime}, y^{\prime \prime}\right.$ nearly orthogonal $]>7 / 8$. (Binom distrib tail)
Lemma: If $x^{\prime \prime}, y^{\prime \prime}$ nearly orthogonal and $c^{\prime} \geq 2 c$, then

- $\operatorname{GHD}_{c^{\prime}, n^{\prime}}\left(x^{\prime}, y^{\prime}\right)=1 \Longrightarrow \operatorname{GHD}_{c, n}(x, y)=1$
- $\operatorname{GHD}_{c^{\prime}, n^{\prime}}\left(x^{\prime}, y^{\prime}\right)=0 \Longrightarrow \operatorname{GHD}_{c, n}(x, y)=0$

The First Bad Event

Recall $B A D_{1}: \operatorname{GHD}_{c^{\prime}, n^{\prime}}\left(x^{\prime}, y^{\prime}\right) \neq \operatorname{GHD}_{c, n}(x, y)$.
Notation: $x=x^{\prime} \circ x^{\prime \prime}, y=y^{\prime} \circ y^{\prime \prime}, n=n^{\prime}+n^{\prime \prime}$.
Definition: $x^{\prime \prime}, y^{\prime \prime}$ nearly orthogonal if $\left|\Delta\left(x^{\prime \prime}, y^{\prime \prime}\right)-n^{\prime \prime} / 2\right|<2 \sqrt{n^{\prime \prime}}$.

Lemma: $\operatorname{Pr}_{y^{\prime \prime}}\left[x^{\prime \prime}, y^{\prime \prime}\right.$ nearly orthogonal $]>7 / 8$. (Binom distrib tail)
Lemma: If $x^{\prime \prime}, y^{\prime \prime}$ nearly orthogonal and $c^{\prime} \geq 2 c$, then

- $\operatorname{GHD}_{c^{\prime}, n^{\prime}}\left(x^{\prime}, y^{\prime}\right)=1 \Longrightarrow \operatorname{GHD}_{c, n}(x, y)=1$
- $\operatorname{GHD}_{c^{\prime}, n^{\prime}}\left(x^{\prime}, y^{\prime}\right)=0 \Longrightarrow \operatorname{GHD}_{c, n}(x, y)=0$

Corollary: $\operatorname{Pr}\left[B A D_{1}\right]<1 / 8$.

The Second Bad Event

Recall $B A D_{2}: \operatorname{GHD}_{c, n}(x, y) \neq \mathcal{P}(x, y)$.
Bounding $\operatorname{Pr}\left[B A D_{2}\right]$ is subtle:

- x is good, so $\operatorname{Pr}[\mathcal{P}$ errs $\mid x] \leq 2 \varepsilon$
- But this requires $(x, y) \sim \mu_{c, n}$
- Random extension $\left(x^{\prime}, y^{\prime}\right) \rightarrow(x, y)$ is not $\sim \mu_{c, n}$.

The Second Bad Event

Recall $B A D_{2}: \operatorname{GHD}_{c, n}(x, y) \neq \mathcal{P}(x, y)$.
Bounding $\operatorname{Pr}\left[B A D_{2}\right]$ is subtle:

- x is good, so $\operatorname{Pr}[\mathcal{P}$ errs $\mid x] \leq 2 \varepsilon$
- But this requires $(x, y) \sim \mu_{c, n}$
- Random extension $\left(x^{\prime}, y^{\prime}\right) \rightarrow(x, y)$ is not $\sim \mu_{c, n}$.
- Actual distrib (fixed x, random y):
$-(x, y) \sim\left(\mu_{c^{\prime}, n^{\prime}} \mid x\right) \otimes$ Unif $_{n^{\prime \prime}}$
- y uniform over a subset of $\{0,1\}^{n}$, just like in $\mu_{c, n}$

The Second Bad Event

Recall $B A D_{2}: \operatorname{GHD}_{c, n}(x, y) \neq \mathcal{P}(x, y)$.
Bounding $\operatorname{Pr}\left[B A D_{2}\right]$ is subtle:

- x is good, so $\operatorname{Pr}[\mathcal{P}$ errs $\mid x] \leq 2 \varepsilon$
- But this requires $(x, y) \sim \mu_{c, n}$
- Random extension $\left(x^{\prime}, y^{\prime}\right) \rightarrow(x, y)$ is not $\sim \mu_{c, n}$.
- Actual distrib (fixed x, random y):
$-(x, y) \sim\left(\mu_{c^{\prime}, n^{\prime}} \mid x\right) \otimes$ Unif $_{n^{\prime \prime}}$
- y uniform over a subset of $\{0,1\}^{n}$, just like in $\mu_{c, n}$

Lemma: $\operatorname{Pr}\left[B A D_{2}\right]=O(\varepsilon)$.

Round Elimination, First Attempt (Recap)

Putting it together:

- \mathcal{P} is k-round ε-error protocol for $\mathrm{GHD}_{c, n}$
- \mathcal{Q}_{1} is $(k-1)$-round ε^{\prime}-error protocol for $\mathrm{GHD}_{c^{\prime}, n^{\prime}}$ with
$-c^{\prime}=2 c, n^{\prime}=n / 3$
$-\varepsilon^{\prime}=1 / 8+O(\varepsilon)$

Round Elimination, First Attempt (Recap)

Putting it together:

- \mathcal{P} is k-round ε-error protocol for $\mathrm{GHD}_{c, n}$
- \mathcal{Q}_{1} is $(k-1)$-round ε^{\prime}-error protocol for $\mathrm{GHD}_{c^{\prime}, n^{\prime}}$ with
$-c^{\prime}=2 c, n^{\prime}=n / 3$
$-\varepsilon^{\prime} \leq 1 / 8+16 \varepsilon \quad$ Can't repeat this argument!

Round Elimination, Second Attempt

Putting it together:

- \mathcal{P} is k-round ε-error protocol for $\mathrm{GHD}_{c, n}$
- \mathcal{Q}_{1} is $(k-1)$-round ε^{\prime}-error protocol for $\mathrm{GHD}_{c^{\prime}, n^{\prime}}$ with
$-c^{\prime}=2 c, n^{\prime}=n / 3$
$-\varepsilon^{\prime} \leq 1 / 8+16 \varepsilon \quad$ Can't repeat this argument!
Second attempt: protocol \mathcal{Q} :
- Repeat $\mathcal{Q}_{1} 2^{O(k)}$ times in parallel, take majority
- Blows up communication by $2^{O(k)}$
- Error is now $\varepsilon^{\prime}=O(\varepsilon)$
- Analysis even more subtle: not just a Chernoff bound

Eventual Round Elimination Lemma

Lemma: If there is a k-round, ε-error protocol for $\mathrm{GHD}_{c, n}$ in which each player sends $s \ll n$ bits, then there is a $(k-1)$-round, $O(\varepsilon)$-error protocol for $\mathrm{GHD}_{2 c, n / 3}$ in which each player sends $2^{O(k)} s$ bits.

Recall Base Case Lemma: There is no zero-round protocol with error $<1 / 2$.

Eventual Round Elimination Lemma

Lemma: If there is a k-round, ε-error protocol for $\mathrm{GHD}_{c, n}$ in which each player sends $s \ll n$ bits, then there is a $(k-1)$-round, $O(\varepsilon)$-error protocol for $\mathrm{GHD}_{2 c, n / 3}$ in which each player sends $2^{O(k)} s$ bits.

Recall Base Case Lemma: There is no zero-round protocol with error $<1 / 2$.

Consequence: Main Theorem

Theorem: There is no $o(n)$-bit, $\frac{1}{3}$-error, $O(1)$-round randomized protocol for $\mathrm{GHD}_{c, n}$. In other words, $\mathrm{R}^{O(1)}(\mathrm{GHD})=\Omega(n)$.

Eventual Round Elimination Lemma

Lemma: If there is a k-round, ε-error protocol for $\operatorname{GHD}_{c, n}$ in which each player sends $s \ll n$ bits, then there is a $(k-1)$-round, $O(\varepsilon)$-error protocol for $\mathrm{GHD}_{2 c, n / 3}$ in which each player sends $2^{O(k)} s$ bits.

Recall Base Case Lemma: There is no zero-round protocol with error $<1 / 2$.

Consequence: Main Theorem

Theorem: There is no $o(n)$-bit, $\frac{1}{3}$-error, $O(1)$-round randomized protocol for $\mathrm{GHD}_{c, n}$. In other words, $\mathrm{R}^{O(1)}(\mathrm{GHD})=\Omega(n)$.

More Specific: $\mathrm{R}^{k}(\mathrm{GHD})=n / 2^{O\left(k^{2}\right)}$.

Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and F_{k} has been an important open question since at least 2003. Why did it remain open for so long?

Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and F_{k} has been an important open question since at least 2003. Why did it remain open for so long? Underlying communication problem thorny!

Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and F_{k} has been an important open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny! Resists the "usual" attacks:

- Rectangle-based methods (discrepancy/corruption)
- Approximate polynomial degree
- Pattern matrix, Factorization norms [Sherstov'08], [Linial-Shraibman'07]
- Information complexity [C.-Shi-Wirth-Yao'01], [BarYossef-J.-K.-S.' 02]

Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and F_{k} has been an important open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny! Resists the "usual" attacks:

- Rectangle-based methods (discrepancy/corruption)

Matrix has large near-monochromatic rectangles

- Approximate polynomial degree
- Pattern matrix, Factorization norms [Sherstov'08], [Linial-Shraibman'07]
- Information complexity [C.-Shi-Wirth-Yao'01], [BarYossef-J.-K.-S.' 02]

Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and F_{k} has been an important open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny! Resists the "usual" attacks:

- Rectangle-based methods (discrepancy/corruption)

Matrix has large near-monochromatic rectangles

- Approximate polynomial degree

Underlying predicate has approx degree $\widetilde{O}(\sqrt{n})$

- Pattern matrix, Factorization norms [Sherstov'08], [Linial-Shraibman'07]
- Information complexity [C.-Shi-Wirth-Yao'01], [BarYossef-J.-K.-S.' 02]

Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and F_{k} has been an important open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny! Resists the "usual" attacks:

- Rectangle-based methods (discrepancy/corruption)

Matrix has large near-monochromatic rectangles

- Approximate polynomial degree

Underlying predicate has approx degree $\widetilde{O}(\sqrt{n})$

- Pattern matrix, Factorization norms [Sherstov'08], [Linial-Shraibman'07]

Quantum communication upper bound $O(\sqrt{n} \log n)$

- Information complexity [C.-Shi-Wirth-Yao'01], [BarYossef-J.-K.-S.' 02]

Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and F_{k} has been an important open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny! Resists the "usual" attacks:

- Rectangle-based methods (discrepancy/corruption)

Matrix has large near-monochromatic rectangles

- Approximate polynomial degree

Underlying predicate has approx degree $\widetilde{O}(\sqrt{n})$

- Pattern matrix, Factorization norms [Sherstov'08], [Linial-Shraibman'07]

Quantum communication upper bound $O(\sqrt{n} \log n)$

- Information complexity [C.-Shi-Wirth-Yao'01], [BarYossef-J.-K.-S.' 02]

Hmm! Can't see a concrete obstacle

Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and F_{k} has been an important open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny! Resists the "usual" attacks:

- Rectangle-based methods (discrepancy/corruption)

Matrix has large near-monochromatic rectangles

- Approximate polynomial degree

Underlying predicate has approx degree $\widetilde{O}(\sqrt{n})$

- Pattern matrix, Factorization norms [Sherstov'08], [Linial-Shraibman'07]

Quantum communication upper bound $O(\sqrt{n} \log n)$

- Information complexity [C.-Shi-Wirth-Yao'01], [BarYossef-J.-K.-S.' 02]

Hmm! Can't see a concrete obstacle
I'm biased (I helped invent it, so it's my pet technique)

Open Problems

1. The key problem here: Settle R (GHD).
2. More generally: Understand communication complexity of "gap problems" better.
3. This should help with other streaming problems, e.g., longest increasing subsequence.
