Finding Frequent Items in Data Streams

Graham Cormode

graham@research.att.com

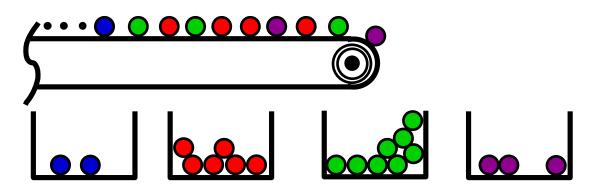
Marios Hadjieleftheriou (AT&T) S. Muthukrishnan (Rutgers) Radu Berinde & Piotr Indyk (MIT) Martin Strauss (U. Michigan)

Data Streams

- Many large sources of data are best modeled as data streams
 - E.g. streams of network packets, defining traffic distributions
- Impractical and undesirable to store and process all data exactly
- Instead, seek algorithms to find approximate answers
 - With one pass over data, quickly build a small summary
- Active research area for last decade, history goes back 30 years

The Frequent Items Problem

- The Frequent Items Problem (aka Heavy Hitters): given stream of N items, find those that occur most frequently
- E.g. Find all items occurring more than 1% of the time
- Formally "hard" in small space, so allow approximation
- Find all items with count $\geq \phi N$, none with count $< (\phi \varepsilon)N$
 - Error $0 < \epsilon < 1$, e.g. $\epsilon = 1/1000$
 - Related problem: estimate each frequency with error $\pm \epsilon N$



Why Frequent Items?

- A natural question on streaming data
 - Track bandwidth hogs, popular destinations etc.
- The subject of much streaming research
 - Scores of papers on the subject
- A core streaming problem
 - Many streaming problems connected to frequent items (itemset mining, entropy estimation, compressed sensing)
- Many practical applications
 - Search log mining, network data analysis, DBMS optimization

This Talk

- A brief history of the frequent items problem
- A tour of some of the most popular algorithms
 - Counter-based algorithms: Frequent, LossyCounting, SpaceSaving
 - Sketch algorithms: Count-Min Sketch, Count Sketch
- Experimental comparison of algorithms
- Extensions, new results and future directions

Data Stream Models

- We model data streams as sequences of simple tuples
- Complexity arises from massive length of streams
- Arrivals only streams:
 - Example: (x, 3), (y, 2), (x, 2) encodes the arrival of 3 copies of item x, 2 copies of y, then 2 copies of x.
 - Could represent eg. packets on a network; power usage

X

X

V

- Arrivals and departures:
 - Example: (x, 3), (y,2), (x, -2) encodes
 final state of (x, 1), (y, 2).
 - Can represent fluctuating quantities, measure differences between two distributions, or represent general signals

The Start of The Problem?

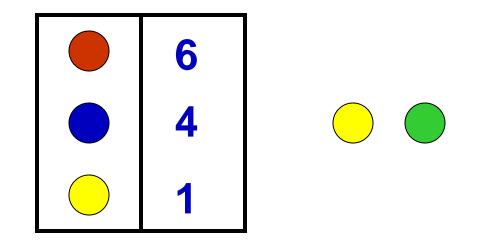
[J.Alg 2, P208-209] Suppose we have a list of *n* numbers, representing the "votes" of *n* processors on the result of some computation. We wish to decide if there is a majority vote and what the vote is.

- Problem posed by J. S. Moore in Journal of Algorithms, in 1981
- Does not require a streaming solution, but first solutions were

MAJORITY algorithm

- MAJORITY algorithm solves the problem in arrivals only model
- Start with a counter set to zero. For each item:
 - If counter is zero, pick up the item, set counter to 1
 - Else, if item is same as item in hand, increment counter
 - Else, decrement counter
- If there is a majority item, it is in hand
 - Proof outline: each decrement pairs up two different items and cancels them out
 - Since majority occurs > N/2 times, not all of its occurrences can be canceled out.

"Frequent" algorithm



- FREQUENT generalizes MAJORITY to find up to k items that occur more than 1/k fraction of the time
- Keep k different candidates in hand. For each item in stream:
 - If item is monitored, increase its counter
 - Else, if < k items monitored, add new item with count 1
 - Else, decrease all counts by 1

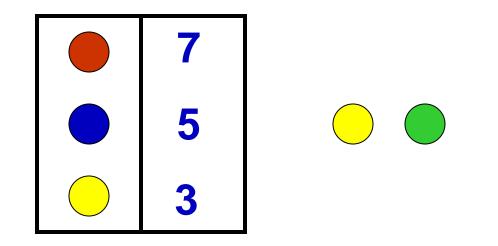
Frequent Analysis

- Analysis: each decrease can be charged against k arrivals of different items, so no item with frequency N/k is missed
- Moreover, $k=1/\epsilon$ counters estimate frequency with error ϵN
 - Not explicitly stated until later [Bose et al., 2003]
- Some history: First proposed in 1982 by Misra and Gries, rediscovered twice in 2002
 - Later papers showed how to make fast implementations

Lossy Counting

- LossyCounting algorithm proposed in [Manku, Motwani '02]
- Simplified version:
 - Track items and counts
 - For each block of $1/\epsilon$ items, merge with stored items and counts
 - Decrement all counts by one, delete items with zero count
- Easy to see that counts are accurate to εΝ
- Analysis shows $O(1/\epsilon \log \epsilon N)$ items are stored
- Full version keeps extra information to reduce error

SpaceSaving Algorithm



- "SpaceSaving" algorithm [Metwally, Agrawal, El Abaddi 05] merges Lossy Counting and FREQUENT algorithms
- Keep k = 1/ε item names and counts, initially zero
 Count first k distinct items exactly
- On seeing new item:
 - If it has a counter, increment counter
 - If not, replace item with least count, increment count

SpaceSaving Analysis

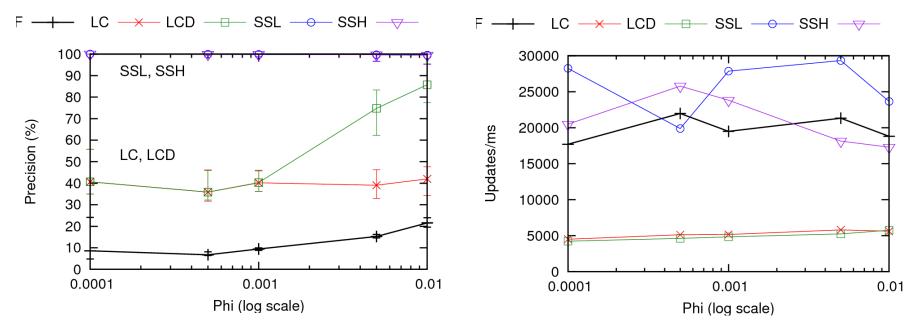
- Smallest counter value, min, is at most εn
 - Counters sum to n by induction
 - $1/\epsilon$ counters, so average is ϵ n: smallest cannot be bigger
- True count of an uncounted item is between 0 and min
 - Proof by induction, true initially, min increases monotonically
 - Hence, the count of any item stored is off by at most εn
- Any item x whose true count > En is stored
 - By contradiction: x was evicted in past, with count $\leq \min_{t}$
 - Every count is an overestimate, using above observation
 - So est. count of $x > \varepsilon n \ge \min \ge \min_{t}$, and would not be evicted

So: Find all items with count > ϵn , error in counts $\leq \epsilon n$

Experimental Comparison

- Implementations of all these algorithms (and more!) at http://www.research.att.com/~marioh/frequent-items
- Experimental comparison highlights some differences not apparent from analytic study
 - All counter algorithms seem to have similar worst-case performance $(O(1/\epsilon)$ space to give ϵN guarantee)
 - Algorithms are often more accurate than analysis would imply
- Compared on a variety of web, network and synthetic data

Counter Algorithms Experiments



- Two implementations of SpaceSaving (SSL, SSH) achieve perfect accuracy in small space (10KB – 1MB)
- Very fast: 20M 30M updates per second

Counter Algorithms Summary

Counter algorithms very efficient for arrivals-only case

- Use $O(1/\epsilon)$ space, guarantee ϵN accuracy
- Very fast in practice (many millions of updates per second)
- Similar algorithms, but a surprisingly clear "winner"
 - Over many data sets, parameter settings, SpaceSaving algorithm gives appreciably better results
- Many implementation details even for simple algorithms
 - "Find if next item is monitored": search tree, hash table...?
 - "Find item with smallest count": heap, linked lists...?
- Not much room left for improvement in core problem?

Outline

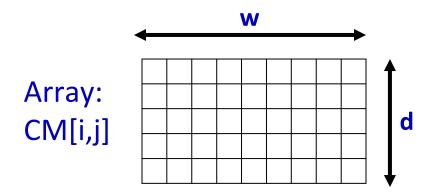
- Problem definition and background
- "Counter-based" algorithms and analysis
- "Sketch-based" algorithms and analysis
- Further Results
- Conclusions

Sketch Algorithms

- Counter algorithms are for the "arrivals only" model, do not handle "arrivals and departures"
 - Deterministic solutions not known for the most general case
- Sketch algorithms compute a summary that is a linear transform of the frequency vector
 - Departures are naturally handled by such algorithms
- Sketches solve core problem of estimating item frequencies
 - Can then use to find frequent items via search algorithm

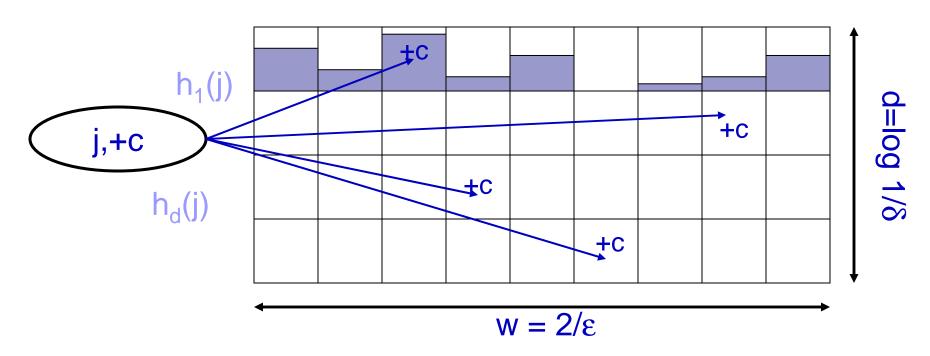
Count-Min Sketch

- Count-Min Sketch proposed in [C, Muthukrishnan '04]
- Model input stream as a vector x of dimension U
 - x[i] is frequency of item i
- Creates a small summary as an array of $w \times d$ in size
- Use d hash function to map vector entries to [1..w]



Finding Frequent Items in Data Streams

Count-Min Sketch Structure



- Each entry in vector x is mapped to one bucket per row.
- Estimate x[j] by taking min_k CM[k,h_k(j)]
 - Guarantees error less than $\varepsilon ||\mathbf{x}||_1$ in size $O(1/\varepsilon \log 1/\delta)$
 - Probability of more error is less than $1-\delta$

Count-Min Sketch Analysis

Approximate x'[j] = min_k CM[k,h_k(j)]

Analysis: In k'th row, CM[k,h_k(j)] = x[j] + X_{k,j}

$$- X_{k,j} = \sum x[i] | h_k(i) = h_k(j)$$

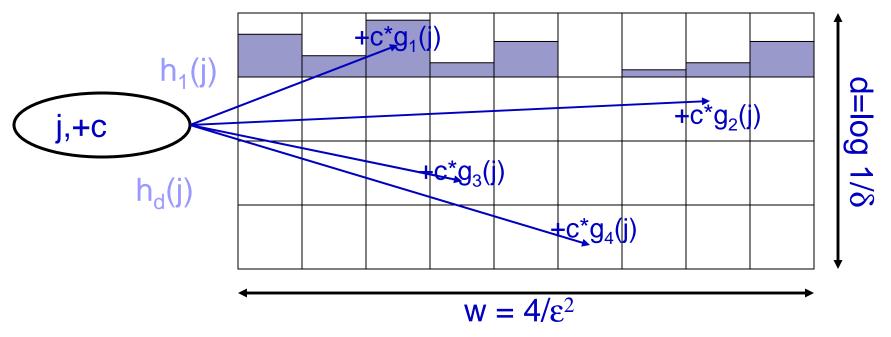
$$\begin{array}{ll} - \ \mathsf{E}(\mathsf{X}_{k,j}) &= \sum x[k]^* \Pr[\mathsf{h}_k(i) = \mathsf{h}_k(j)] \\ &\leq \Pr[\mathsf{h}_k(i) = \mathsf{h}_k(k)] * \sum a[i] \\ &= \varepsilon \ ||x||_1/2 \ \text{by pairwise independence of } \mathsf{h} \end{array}$$

- $\Pr[X_{k,j} \ge \varepsilon ||x||_1] = \Pr[X_{k,j} \ge 2E(X_{k,j})] \le 1/2$ by Markov inequality

- So, $\Pr[x'[j] \ge x[j] + \varepsilon ||x||_1] = \Pr[\forall k. X_{k,j} \ge \varepsilon ||x||_1] \le 1/2^{\log 1/\delta} = \delta$
- Final result: with certainty $x[j] \le x'[j]$ and with probability at least 1- δ , $x'[j] < x[j] + \varepsilon ||x||_1$
 - Estimate is biased, can correct easily

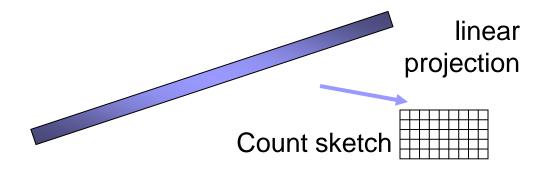
Count Sketch

- Count Sketch proposed in [Charikar, Chen, Farach-Colton '02]
- Uses extra hash functions $g_1...g_{\log 1/\delta} \{1...U\} \rightarrow \{+1,-1\}$
- Now, given update (j,+c), set CM[k,h_k(j)] += c*g_k(j)



Finding Frequent Items in Data Streams

Count Sketch Analysis

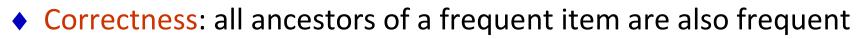


- Estimate x'_k[j] = CM[k,h_k(j)]*g_k(j)
- Analysis shows estimate is correct in expectation
- Bound error by analyzing the variance of the estimator
 - Apply Chebyshev inequality on the variance
- With probability 1- δ , error is at most $\varepsilon \|x\|_2 < \varepsilon N$
 - $\|\mathbf{x}\|_2$ could be much smaller than N, at cost of $1/\epsilon^2$

Hierarchical Search

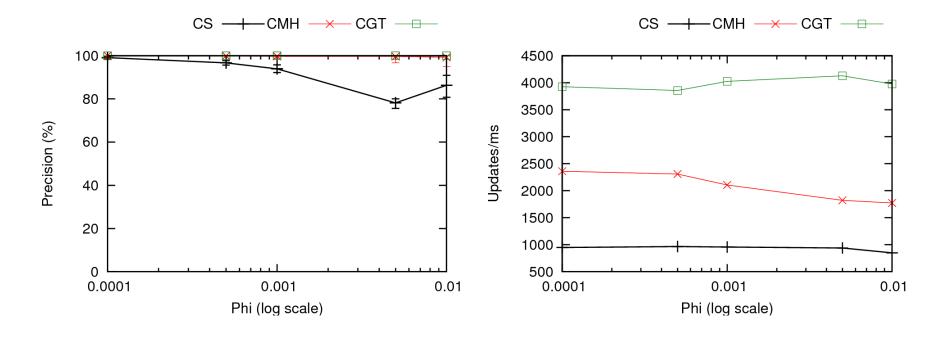
Sketches estimate the frequency of a single item

- How to find frequent items without trying all items?
- Divide-and-conquer approach limits search cost
 - Impose a binary tree over the domain
 - Keep a sketch of each level of the tree
 - Descend if a node is heavy, else stop



- Alternate approach based on "group testing"
 - Use sketches to determine identities of frequent items by running multiple tests.

Sketch Algorithms Experiments



- Less clear which sketch is best: depends on data, parameters
- Speed less by factor of 10, size more by factor 10:
 - A necessary trade off for flexibility to handle departures?

Outline

- Problem definition and background
- "Counter-based" algorithms and analysis
- "Sketch-based" algorithms and analysis
- Further Results
- Conclusions

Tighter Bounds

Observation: algorithms outperform worst case guarantees

- Analysis: can prove stronger guarantees than εΝ
 - Define n_1 = highest frequency, n_2 = second highest, etc.
 - Then define $F_1^{res(k)} = N (n_1 + n_2 + ... n_k)$, $\ll N$ for skewed dbns
 - Result [Berinde, C, Indyk, Strauss, '09] : Frequent, SpaceSaving (and others) guarantee EF^{res(k)} error
- Similar bounds for sketch algorithms
 - CountMin sketch also has $F_1^{res(k)}$ bound
 - Count sketch has $(F_2^{res(k)})^{1/2} = (\sum_{i=k+1}^{m} n_i^2)^{1/2}$ bound
 - Related to results in Compressed Sensing for signal recovery

Weighted Updates

- Weighted case: find items whose total weight is high
 - Sketch algorithms adapt easily, counter algs with effort
- Simple solution: all weights are integer multiples of small δ
- Full solution: define appropriate generalizations of counter algs to handle real valued weights [Berinde et al '09]
 - Straightforward to extend SpaceSaving analysis to weighted case
 - Frequent more complex, action depends on smallest counter value
 - No positive results known for LossyCounting

Mergability of Summaries

- Want to merge summaries, to summarize the union of streams
- Sketches with shared hash fns are easy to merge together
 - Via linearity, sum of sketches = sketch of sums
- Counter-based algorithms need new analysis [Berinde et al'09]
 - Merging two summaries preserves accuracy, but space may grow
 - With pruning of the summary, can merge indefinitely
 - Space remains bounded, accuracy degrades by at most a constant

Other Extensions

Heavy Changers

- Which items have largest (absolute, relative) change over two streams?
- Assumptions on frequency distribution, order
 - Give tighter space/accuracy tradeoff for skewed distributions
 - Worst case arrival order vs. random arrival order
- Distinct Heavy Hitters
 - E.g. which sources contact the most distinct addresses?
- Time Decay
 - "Weight" of items decay (exponentially, polynomially) with age

Conclusions

- Finding the frequent items is one of the most studied problems in data streams
 - Continues to intrigue researchers
 - Many variations proposed
 - Algorithms have been deployed in Google, AT&T, elsewhere...
- Still some room for innovation, improvements
- Survey and experiments in VLDB [C, Hadjieleftheriou '08]
 - Code, synthetic data and test scripts at
 http://www.research.att.com/~marioh/frequent-items
 - Shorter, broader write up in CACM 2009